DVA LO C The tool of thought for expert programming

Language Reference

Version 12.0

Copyright © 1982-2008 by Dyalog Limited.

All rights reserved.

Version 12.0.3

First Edition August 2008

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited, South Barn, Minchens Court, Minchens
Lane, Bramley, Hampshire RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:

Intel, 386 and 486 are registered trademarks of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.
POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

SQAPL is copyright of Insight Systems ApS.

The Dyalog APL True Type font is the copyright of Adrian Smith.

TrueType is a registered trademark of Apple Computer, Inc.

UNIX is a trademark of X/Open Ltd.

Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Overview
CONEENES.....ccricrir s ——————————— v
CHAPTER 1 Introduction ... sesssssssssessssssssenes 1
CHAPTER 2 Defined Functions & Operators...........ccoverereresenesesesesesesenans 51
CHAPTER 3 Object Oriented Programing.........c.osusesmssssssesesssssssesssssssses 121
CHAPTER 4 Primitive FUNCtions..........coonmnnnnnnnnsssessns 195
CHAPTER 5 Primitive Operators...........cccouvmnmsnsnnnsssssnsssssssssssssssnnns 293
CHAPTER 6 System Functions & Variables...........cccceourrirrirssssnsnnnnns 319
CHAPTER 7 System Commands...........ccourmmrninsnnnnnnnnsssssssssssssssnnns 543
CHAPTER 8 Error MeSSaQescccerummmmmmnmnmsmsssssssssssssssssssssssssssssssssssnnns 569
SYMbDOIIC INAEX.......ceccccecce s 603

Alphabetic INAEX ... s 607

Contents v

Contents

L0 i
CONENTS ...t ———— v
CHAPTER 1 INtroduction........connnnnnssssssssssssssssssesssssssens 1
W OTKSPACES ... eevveeiiieiiieiie ettt eieeeteeesteesbee s beessseeseseessseessseessseessseessseasseessseensseessseessseensns 1
INAIMESPACES .eeenvvieeeitieeeitee et te ettt e e sttt e et e e sbtt e e s bt e e e e abtteesabteeesabaeesaabteesnabaeesanbeeesseeeesans 2
N 0 2 - S PSSR 4
Le@Al NAINESvviiiiiciie e eieeeite et et e et esebeessbeesabeesebeesabeestseessseesssesssseessseensseessseessseenens 7
Specification of Variables..........oocuiiiiiiiiii e 7
VECtOT INOLALIOM 1..eeutieiiieiieie ettt sttt b e b ettt et st e saees 8
REStIUCTUIING ATTAYSveeiitieitieeiieeitee ettt ettt et ettt e et e st e st esate e sateesateesaeeesbeeennes 9
DiSPLAY OF ATTAYS....eiectieeiieeiie et eiee ettt ettt e et e e tee et e eteessseessseesnseesaseesnseessseenns 10
Prototypes and Fill [EeMScccviiiieiiiiiiierie ettt eveesreesereesereesevaeseneenes 14
EXPIESSIONS ...veiuviieiieeiieeiee et te et e et e et e et eeetbeestbeetbeebae e baeeveeessaesnbaessseessseesssessssessssennes 16
FUNCHIONS ..ttt ettt ettt et e et e bt e st e sateesabeesabeesnneesnneenns 17
OPCIALOTS ..eeiuiiieeeiiieeetieeeeitteeeetteeestteeeettee e sttee s steeeeanteeeaseeeeesseessnssaeessseesansseessnseeennnns 20
NAMESPACE SYNTAXeeeiiiiiiiiiieieeete ettt ettt et ebee st esreesbeesaneesanee 22
TRICAAS ...ttt et ettt be e b et e b ettt e et e et eae 34
EXternal VariabIes..........c.oeoieiiiiieeee ettt e 48
ComPONENE FIlESeiieiiiiiiiiieie ettt ettt sttt st 49
AUXIHATY PTOCESSOTSuviiiiiieiieeiie ettt ettt ettt e s be e s teesateesneeessaeesseeennneennens 49
MIGEation LEVEL......oiiviiiiiiciie ettt ettt e st e s rraessseesesaeseseessneenes 49
QS (O T[] 21 o) s WU PSPRR 50
CHAPTER 2 Defined Functions & Operators...........cconnmrresensnsnnesessssssssenens 51
Canonical RePrESENLAtIONcccveeeieeiiieiiierrierteesreeseeeieeeseeeeseessseesssaessseessseessseessseenes 51
IMOAEL SYNMEAXviiiiiieiieeiieeiie et e et e eteesbeestbeestaeestbeestaeetaeeraeesseessseessseessseesssessssessssennes 52
N 2111110153 0L SO 54
Global & LoCal NAMEScoveeiiriiieiieiie ittt sttt sttt ettt et st 55
INAIMELISTS ...ttt ettt ettt ettt ettt et e e e bt e e bt e e bt e e bt e enbeeebeeeabeesnbeesnbeeenteesanes 57
Function Declaration Statementscc.eecveeeriiercieeririesieesieesieesreeseeesreesneeseneesreennens 58

Access Statementccoeeuieeeniiniennenne. TACCESS o, 58

Attribute Statementcceeeiinneennene. tAttribute 59

Implements Statement...........c...c...eu..... :Implements. ., 60

Signature Statement...........cccevenrenennen. :Signature e 60
CONLTOL STIUCLUTES ...cutieeiiieeitie ettt ettt et e et e et e et e e bt e sateesabeesabeesaeeesneeenns 62

If Statementcoveevenieiieeiieiiieenneee. tIf beXPiii e 64

While Statementcooouvviniiinniiinnne. :While bexp..nicieee. 67

vi

Contents

Repeat Statement........c..cooeveviniinienninns tRepeat 69

For Statementeeeevvuereeiinneeennnnnennn. :For var :In[Each] aexp..... 71

Select Statement.......ccceeeuveeneeneeennennnenn. :Select aexpuiiiiiee, 73

With Statementccceevveviiiieinienennn.. tWith obja 75

Hold Statementccceeenveveieienenenennnn.. tHold tkns oo, 76

Trap Statement.........cceeeveverenrenrennennen. :Trap ecode..oveeiiieiiceeeee, 80

GoTo Statementcceeeuveeenienienaennen. :GOTO @EXP coeeeiieeieeieeee e 83

Return Statement.........ccceeeviiiineinenenenn. tReturn 83

Leave Statement.......cccccveveiieienennenenenn. LAV e, 83

Continue Statement.........cceveveeenenenennnne. tContinue.. e, 84
i@ TS ottt ettt ettt ettt ettt ettt ettt bt et e et e st e e be e sat e e e ab e e ate e sate e bt e e enteeneeeneeas 85
Idi0M RECOZNITIONeeivieiiieeiiieiieeciie ettt et e s be e st e e s e e ssbeeseneessseenneessneensees 88
Search Functions and Hash Tablesooovvviiiiiiiiiieieeceeeee e 92
Locked FUNCHIONS & OPETALOTSeccuvieriieeiiieiieeieeeieeeieeereesreesereeseseessneessseessnesseesnsnes 93
The State INAICALOTrcooviieiiiie et e e e e e e e e e seaaaaeeeees 94
Dynamic Functions & OPEratorscueerueeiriieiiieiiieeiee ettt ettt e s 96
APL LINE EAITOT.....coiiiiieeeeeeeeeeeeeeee ettt e e et e e e e e e e e e e s e e s ssssennnsanaenes 111
CHAPTER 3 Object Oriented Programing..........c.coceeresesmsessssssssssssssssssssssssnnns 121
INtrOdUCING ClaSSESccuviieiieiiieeiieeieeeiee st et e e e ste e s b e esere e taeessseessseessaeesaeenseeanseenns 121
(000) 1115 40 (o170 4 TR PRRPORURRN 125
LD 1T 5 D (110 S 138
ClaSS MEIMDETS.uvviiieiiiiiiiee ettt eet et e e e ettt e e s st e e e e s s essataeeeesesnaaaeeeeeas 140
<] U RSP RRRR 141
IMEETIOMS ... e 146
PIOPEILIES ..veiiiiieiieciie ettt e st e st e b e e stbe e tb e e tbe e tae e tseessseassaeessaeessaeasseeans 150
INEEITACES ... vt e 163
INCIUdIng NAMESPACESccveeerieerieiiieeiieireesrtesreesreesreesreestaeessseessseessseessaeeseessseeans 165
INESTEA CLASSES .vvveeiiiiiiiieie ettt e ettt e e e e et e e e e s e btbeeeessesataseeessensaaaeeeessannes 168
NAMESPACE SCIIPLS ..uveeiiieriiieetiesie et erteestteertteesttesbeesteesbeesteesaseessseesnseesseeensaeenseeans 177
Class Declaration StatemENTS..............oovviuvrieeeeeiiireeeeeeeiireeeeeeeerirreeeeeeeirreeeeeeenanreeeeeas 182
B R TS s B P2 163 10 1<) 1L PSRRI 187
PTOPETEY SECHION....ccutiiiiiiiiieeiie ettt et e et s e e eesbeessseessseessseessneesseenseeens 189
CHAPTER 4 Primitive FUNCHIONS.......cccccvrrrirrerrrr s 195
SCALAT FUNCHONS.....cciiiiiiiiiiie ettt e e et e e e s s et ae e e s s esaaeeeeeesennes 195
MIXEA FUNCHONS ...ttt et e e e e e e e e e e e e e e b et aaaeeeeeeeeeeas 198
ConTOrMADIIIEY ..c..eeiiiiiieiiete ettt et 201
Fill EISIMENES ...oeiiiiiiiieiiee ettt eeae e eeae e e e e et e e e e eenanneeeeeeeeaanreeeeeeennnneeas 201
AXIS SPECTICALION ..c.eiuiiiiiiiiiicetece ettt ettt 202
FUNCHioN PreSEntation.......cccuvvviiiiiiiiiiiie et e e et e e e e e e e e e eenaneeas 202

ADOIt: e e e s 203

Add: e REXHY e 204

Contents Vii

ASSIZNMENE: t.vviinrenrinrerenrererereneennes XY e 205
Assignment (Indexed):ccccevvvnnennnnn. {RICXLITCY o 207
Assignment (Selective):ccevvueerunnennnnns (EXP X)€Y e, 211
Binomial:ccvveeiiiiiiieiiiieeerie e, REXTY oo, 212
Branch:ccovivviiiiiiiiiiinea e (PR 213
Catenate/Laminate:eeuveeeneenenrenennennn. REX TKTY oo 217
Catenate First: woveveeenverenieeenienenieeneenen. REXTIKTY oo 218
CeiliNg: .evevvvieeeiiee e RETY e, 219
Circular:oivvveeviniinienieniinreneenreneenenns REXOY it 219
Deal: c.ivnieiiiiiiii e REX2Y it 220
Decode: cuvveviniiiiiiiiiiieie e REXLY i 220
DEPLh: .eeeeveiiiiiiiiiiieeeeee e e e e eeeeeeeeeeiaens (OML) REEY o, 222
DiSCIOSE: tevuniiiieeiiieeeie e (OML) R«2Y or R«tY .o, 223
Divide: couieiiiiiiiri e REXTY i, 224
DIOp: ceeenieeeie e REXIY e 225
Drop with AXeS: ...eeevvueeeeirneeerineeennnnn. REXVLKIY o, 226
Enclose: ..cooeviviiviiiiiiiiriiiieieeeeenn RECY e 227
Enclose with AXeS:......oeevvueeeuneernnnennnnns RECLKIY e, 228
Encode: ..ooveviiiiiiiiiiiei e REXTY oo 229
EnliSt: wovvevviieieiiiie et eeeaaen, (OML21) R<€Y e 231
Equal: .ooiiiiiiiiiii e REXZY i 231
Excluding:cceevvieiiiiiiiiiiiiiiieenneee, REX~Y e 232
Execute (Monadic):coeevvenveniiniennennnn REDY e 233
Execute (Dyadic): ..coovvevvenienieniiniennennns REXLY i 233
Expand:oevvvvieeiiiiieeeeiee e, REXNLKIY o, 234
Expand First: ...c.ooeveviieiiiiiniiiniinennnnn. REXXY e 235
Exponential:cccoviiiiiiiiiiiiiinnn. Re®Y it 235
Factorial:oevvvneeiieiiiieeiiieeiieeeaenns RELY e, 235
Find: oo REXEY oo 236
23] SR (OML) R«3Y or RetY i 237
21 (07} RELY o, 237
Format (Monadic):cccevevveiunininnennns RETY e 237
Format (Dyadic): ...cveuvenveniennerinnennennes REXTY i, 242
Grade Down (Monadic):c.cevvvneennee. RVY e 244
Grade Down (Dyadic):ceevuvvenvvnnnnnnne. REXTY o 245
Grade Up (Monadic):cevveenreenrennnnnnnn. REBY oo 249
Grade Up (Dyadic): ..ovvvevneeenrennnennnnnnnns REXAY oo 250
GICALET: veuvvnrvnrenrenrenrenrenrenrenrenreeenenns REXDY e 251
Greater Or Equal:cooovnvieiiiiiinninnnee. ReX2Y i 251
Identity: ...ccooviiiiiiiiiii e RetY e, 252
TNAEX: ettt RE{XIDY oo 252
Index With AXES: vevvvveniuiininiininiininnenenns Re{XIOLKIY cooeeeeeeeeeeeeeeeeee, 254

Index Generator:coveeveeniineneenennenns Rt Y e 256

viii

Contents

Index Of: evvriiiiceeeceeee e, REXTY e, 257
INAEXING: .ueevveeiiieeiieeeiie e e e e e, REXLY T oo, 257
INterSeCtion: ..o.vvveeerenenenvereneieieenenenennns ReEXNY e 261
LSS s ReX<Y e 261
Less Or Equal: ...ccuveeniiiiiiniiiiiiniinniennes ReXSY o, 262
Logarithm:cceciviiiiiiiiiiiiiiiiiiieeneenns REX®Y Lo 262
Magnitude:ooeveriieiiiieeiieeieeeee. ReY e 262
MatCh: .oveviniiiiiiiiieii e REXZY e, 263
Matrix Divide: .ocovvvvnviniiniiiiiiiiineinnees REXBY oo, 264
Matrix INVETSE: wuvvuvieniinniineiieiieiineennens REBY o, 265
MaXiMUM: coueniiniiiiiie e eeeeneenes REXTY e, 266
Membership: ...coeeeveveiveiiiiriiniiiiieeeenns REXEY i 266
MINIMUME cenviniiiieieieeeeeee e enas REXLY oo, 266
MINUS: eririniieininiieeeeeneerereeenenennes REX=Y o, 266
1Y 6 TR (OML) R«<1+[K]Y or R«>[K]Y..... 267
MUltiply: coveeveniiniiiiiniirr s REXXY Lot 268
Nand: oo REXAY e 268
Natural Logarithm:ccoevenveniennens. ReBY Lo 268
NEZAIVE: teuiviiirieiinrineieeiereeneneeneneenenns RE=Y e 269
BN () T REXTY e, 269
N Ot tviiriiiieeerereee e ereeeeeeneneneeans Re~Y e 269
Not Equal: c..ovveviiiiiiiiiiiiiieiiceeeens REXZY i 270
NOt Match: .ovenieiiiiiiieeeeeeeeeans REXZY oo 270
Or, Greatest Common Divisor: REXVY o 271
Partition:.....ceuieeeniiieieieeeeeeeeeeeenen, (OML23) ReXc[KIY oo, 272
Partitioned Enclose:ocouvevnvivniinneennee. (OML<3) ReXe[KIY i, 274
PiTimeS: .eeniniiiiiiieieieieie e, REOY e 274
PICK: s ReEXDY e 275
PIUS: te REXHY e, 275
POWET: v ReEX)Y e 276
Ravel: oo, RE,Y e 277
Ravel with AXES: c.uvvvniivniiniiiiiniiineennens Re, TKIY e, 277
Reciprocal:coevnvieiiiiiiiiiiiiiiiiiinnee. ReTY e, 280
REPHCALE: «.evvveeeevreeeeiiieeeeeieeeevieeeeen, REX/LKIY o 280
Replicate First:ccveeeveeevieeiieennnnn. REXALKTY o, 281
Reshape: ..ovvvviiiiiiiiiiiiiiee e, REXPY oot 281
ReESIAUE: tvvivniiniiiiieieieeee e REXTY e 282
REVEISE: wuuiieniiieiiieeiieeeieeieeeeieeeans ReDLKTY oo 282
Reverse First: ovvevuvenieniiiieeiiinennenen, REOLKIY oo, 283
ROIL: e, R Y e 283
ROtALE: vvniinniineieeieieeieeieeieeaeeneens REXOLKTY coeeeeeeeeeeeeeeeeeen 283
Rotate First: couvevenveninieiiiineeniieneneenen, REXOLKTY oo, 284
Shape: .eeeeniiiiiiiiiiiii e RepY o 285

Contents ix

SPIE: tevreeee e REVLKIY o, 286
SUDLIACE: tvvivnirieiiiiieeiiiireeeerereee e REX=Y i, 286
Take: tvieiiiiiiiririr e REXTY i, 287
Take with AX€S:.cevuurireirieeeriiieeeeiieenn, REXPLKIY o, 288
TIMES: evereniiniereiireirer e e ereeeeenes REXXY it 289
Transpose (Monadic):cccceeeuveneennenne REQY oo, 289
Transpose (Dyadic):ceeevvneeveneernnnnnnn. REXRY Lo, 289
YD et ee e (OML<1) R€€Y e 290
UNION: tiuiviiiniiiireieeeirereeeeeeeneennas REXUY oot 291
UNIQUE: tuveieniinrenrenrererereeenseeeneennes REUY et 291
Without: ..c.ovuviiiiiiiiiiriirireerreeeenees REX~Y i 292
Zilde: coniniiii s REB e 292
CHAPTER 5 Primitive Operators........c.cccouemmmnnnnsnnnnsnsssssssssssssssssssssnns 293
OPCIALOT SYNEAX ...uvviieiiiieeiitiieeiciiteesteeeesteeessereeesssteeeasreeessssaessssaeesssseeesssseeesssseessssseeenns 293
AXIS SPECTIICALIONeiiieiiieiit ettt ettt e st e e e st e st e s e 294
OPErator PreSENtationccceeceeeiieeiiieiiieeieeeieesieesieesteesereesereesareeteeesseesneesssaeensees 295
Assignment (Modified):ccuvevunrinnnnns {RICXFCY e, 295
Assignment (Indexed Modified): {RIXLITFCY oo, 296
Assignment (Selective Modified): {R}<(EXP X)f«Y i 297
Axis (with Monadic Operand): REFLBIY oo 298
Axis (with Dyadic Operand): REXFLBIY oo, 299
COMIMULE: +eneeneeneeneeeeeeeeeeeeeeeeeeeeeeenns {RICXFRY e, 302
Composition (Form I):ccccecevvvnnnnnnn. {R}«fogY e 303
Composition (Form I):ccccevvnnnenne. {R}«AegY o 304
Composition (Form III):ccevvnnnenne. {R}IC(FoB)Y o 305
Composition (Form IV):ccevvievnnnnnne. {R}eXFogY e 305
Each (with Monadic Operand): LR I“F Y e, 306
Each (with Dyadic Operand): {RIEXFTY e 307
Inner Product:cooevviiiiiiniiniinninnnnns REXT oY e, 308
Outer Product:cccevvveeevineeeniinnnn. {R}«Xo.gY e 309
Power Operator:eeeevvuneeerennneennnnn. {RIC{XI(F*XG)Y o 310
RedUCHION: wevvneeneeeeeieeee e, ReF/ZLKTY coeoeeeeeeeeeeeeeeeeeeeeee 312
Reduce First:ccovvvviiiiiiiiiiiiiiiiiienennn, REFAY e, 313
Reduce N-WIiS€: .ccvuvevrniiiieeiieeiieeennnns REXF/LKIY o, 314
o711 U REFNLKIY o, 315
Scan First: ..ocveeeviiiiinieniinienieniiniennennen. REFXY e, 316

SPAWN cvvunieeiiieeeeriieeeeriieeeerrneeeerannas {R}IC{XIFRY o 317

Contents

CHAPTER 6 System Functions & Variables............ccournnninirnnnnsnesenensnnns 319
SYStEmM VariabIesco.eeviiiiiiiiiiiiiieiteetet ettt et s 321
SYSEEM NAMESPACES.....eeeeuriieeiiieeiiiieeetieeetiee e sttt e seteeeeseteeessabeeesseeeesseaessnsseesanseeesns 322
SYSEEM CONSLANTSeeueviieiiiiieeiieeeieeeeeteeestteeeeireessereeessseeessseeeessseeesssaeesssseessssseenns 322
SYSEM FUNCHONS ..ottt ettt ettt et e e 323
Programming Reference A-Z........cccooviiiiiiiiiiiiiiieiieceieee et 329
Character Input/Output:c.eveeennnneee e 329
Evaluated Input/Output:ceeevvvennnes O 331
Underscored Alphabetic Characters: R e 333
Alphabetic Characters:ceeevvunneeen. REDA e 333
Account Information:cccceeevvvennnnnn. REDAT o 334
Account Name:cevevvvueeevnnneennnnnnennn. REDAN o 334
Arbitrary Input:coeevvveeeiiieeeeiin, R{XIOARBIN Y ..coooviriiircrernees 335
Arbitrary QOutput:eevveeeeveeeeerennnnnnnn. {XIOARBOUT Y..ooootoiiiiereiererene, 338
AIDULES: eeveviiieeeeeeiiiiee e eeeriie e Re{XIOAT Y oo 339
AtOmMIC VECIOT: cuuvivvnieiineeiieeiieeninennn. REOAV oo 343
Atomic Vector - Unicode:cevunnnenn. OAVU. ..o, 343
Base Class: cevuuvveevvuirerenineeeiiineeeniineennns REOBASE.Y e 345
(0] T PP Re{X}IOCLASS Y .o 346
Clear WOrkSpace:cevveeeervunneeervnnnnns OCLEAR ..o, 349
Execute Windows Command: ReOCMD Y oo 349
Start Windows Auxiliary Processor: X OCMD Y oo 352
Canonical Representation: REOCR Y e 353
Change SPace:ceevvuneervrneeerrreeerrnnnnnns {R}<{XIOCS Yoo, 355
Comparison Tolerance:cc.ceeevennen. OCT e, 357
Copy WOrkSpace:ccceevveeeevvvneeeennnnnnns {XIOCY Y e, 358
DiGIES: wuueeeerriiieeeeeeerriieeeeeerrrreeeaaans RO 360
Display FOIm:coeeevvvueeeriieeennnnnnnns REODF Y e 360
Division Method:cceevvvvvvvvvernnnnnnnn. ODIV.iiiieeieeeeeee e 363
DEIAY: tevuieiiieeeeiie e {R}ICODL Ve, 364
Diagnostic Message:coveevenrenrennenns REODM .o 364
Dequeue Events:ceevvveeeevieeeennnnnnnnnn. {RIODQ Y oo, 365
Data Representation (Monadic): REODR Y oo 368
Data Representation (Dyadic): ReX DR Yoo 369
Edit ObJect: .evvvvrreieeeeeerriiieeeeeeeevvanennn. {RY<{X}IJED Y., 370
Event MesSage:ueeeevvvneeerruneeeennnnnnns ROEM Y e 371
Event Number:cceuuuueerereiiiininnnnenns REDEN oo 371
EXCEPLON: ..vvvvveeeiiiieeeeriieeeeriieeeeniies R<QJEXCEPTION.....ccccoovvirerierirennens 371
Expunge Object:cevvvveneeeeeerrvennnneeenns {RICTEX Y oo 372
EXport Object:ceeevvveeeeeeevervrrrrnnnnnnns {R}«{X}OEXPORT Y ..coceoevrrrrenre. 374
File Append Component: {R}«X OFAPPEND Y ..coooevvrrrrne. 375

File System Available:c..cc..coeeeeee. ReOFAVATIL oo 375

Contents Xi

File COPY: vvveeeeeiiieeeiiieeeeiee e e e eeaeenn ReX OFCOPY Y i, 376
File Create: .oovvvvnviuniinneineinneineeineinenns {R}«X OFCREATE Y .oooeeeeeeenn. 377
File Drop Component:eeeeeee.. {R}IOFDROP Y oo 378
File Brase: ...oveevveevvinviiniiieineeinennnenn. {R}<X OFERASE Y .ooiriieieeenn. 379
File Hold: .euvviniiiniiiiiiiiiiiiieeenns {R}<OFHOLD Y weeooeeeeeeeeeeeeeee, 379
FIX SCIIPL: wvvvvrvrrrereeeeeeeeeeeeeeeeeeeeennnnns Re{XIOFIX Yoo, 381
Component File Library: ROFLIB Y., 382
Format (Monadic):cceueeeevvunnennnnnn. ROFMT Y o, 383
Format (Dyadic):vueeeeeerevvnneeeeennnnn. ReX OFMT Y o, 384
File Names: «..uvvvnvevniiniiniiieineineinnenn. ROFNAMES ..o 391
File NUMDbETS: c.uvvviiniiniiniiniieeneineeneenees ROFNUMS Lo 392
File Properties:ccceeeeeevueeerunnneennnnn. R«<X OFPROPS Y ..o, 392
File Read ACCESS: weeuvinviniiniiniiniiniinnennen R<OFRDAC Y oo, 394
File Read Component Information: RQFRDCI Y oo, 394
File Read Component:ccceeeeereenee. ROFREAD Y oo, 395
File ReName:cccovvvvvieniivnvinniineennnn. {R}<X OFRENAME Y ..ocoovvevieennn. 396
File Replace Component: {R}«X OFREPLACE Y..coocovrrennes 397
File RESIZE: teuveneeneieieeeeeeeeeeeeeeieeeaaennnn {R}«{X}OFRESIZE Y.oovoeoooreverr.... 398
File SiZ€: cuvuviiiiiiiiiiiiiirereeieiens ROFSIZE Y oo, 398
File St ACCESS: wuvirnrineinierneireinnernenns {R}<X OFSTAC Yoo, 399
File Share Ti: ceuuvveenvinreiniiineinneinneennenn, {R}<X OFSTIE Y., 400
Exclusive File Ti€: .vevvevenveeeneineenaennen {R}X OFTIE Y oo, 401
File UNtie: .ovvnvieniiniineeineiieineineinnenns {RI<OFUNTIE Y oo, 402
Fix Definition:cccevvvevvenieneinneinneinnenn. {RIOFX Yoo, 403
INStances: ..oevvvevevniiiiiiiiieieieeeeaenns R<OJINSTANCES Yoot 404
Index Origin:eeeevvneeeiiieeeriieeennnnn. OIO e 405
Key Label: ...ooeevuieieiiiiiiiiiiieeeiiieeeeenen, REOKL Y oo, 406
Line Count:oveuvenviniiniiniieineineennennen RALC e, 406
Load WorksSpace:eeevveeeenneernnnennnnns OLOAD Y e 407
Lock Definition: ...cccoeveenveeneenneennvennnn. {XIOLOCK Y e 408
Latent EXpression:c.ecevveeeevvenneennnnn. OLX e 409
Map File: covveriiiiieiiiiiie e, Re{XIOMAP Y ..o, 409
Migration Level:cceevvveeervvevennnnnns OML e 411
St MONILOT: «evneeneeneeeeeeeeeeeeeeeeeaeeneens {R}«<X OMONITOR Y .oteoriioreeenann. 412
Query Monitor:eeeveeevneeinneennnnnnnn. R«[OMONITOR Y .o, 413
Name ASSOCIAtION: ..vvvvvvnvrrneenneennernnenn. {RIC{XIONA Y oo, 414
Native File Append:ccevveeeervnnnnnnnn. {R}<X [ONAPPEND Y...coecoverierernees 440
Name Classification:cc.eveeueeneennnnn. REONC Y o 441
Native File Create:cocovevevvenenvenennnnen {R}«<X ONCREATE Y.oeoriireeeeernn. 453
Native File Brase: «..ceeeeeeveeeeeeeneeneenaennen {R}«X ONERASE Y coooveeeeeeeeenn. 453
New INStance: c..cuvvenvenieniiniineineineeneennes REONEW Y o, 454
Name LiSt: vvvinieninieiniiiniiiniinenieneneenes RE{XIONL Y oo, 455

Native File Lock: vuveerereieeeeeeeeeieeeaaennen {R}«<X ONLOCK Y .oveooeeooeeeeeeeenannn, 459

Xii Contents
Native File Names:ccceveveeninvnnennnnns RONNAMESooiiiiiiiiieieeeeeee, 461
Native File NUmMbers:ocvvvvvnvienrinneennees RONNUMS oo 461
Enqueue Event:ccoeevvveeeeiiiiieeeninnnnns {R}IC{XIONQ Y., 462
Nested Representation:c.eeveevennenns REONR Y o 464
Native File Read:ccovvvviiiiiniiniininnnnss ROONREAD Y oo, 465
Native File Rename:oveevevenveneeneenss {R}<X ONRENAME Y .cooevovreeeraenn. 466
Native File Replace:......ccceevvvneeeernnnnnnnn. {R}<X ONREPLACE Y.ooeorveeuern.. 466
Native File ReSIZe:uuuviuviiniiiniieniinneinnenn {R}<X ONRESIZE Y .ccooiooeeeann. 468
Create Namespace:eeeevvvueeevnennnns {R}IC{XIONS Y., 468
Namespace Indicator:cceveuvenvennenns REONST ..o 470
Native File Size:...viviuiiiiiiiiiiiiiiiinennss REONSIZE Y oo, 470
Native File Tie: eeueeneeneeeeeeeeeeeeeeeeeeeeaennns {R}<X ONTIE Y oo, 471
NULTEEM: vt REONULL oo, 472
Native File Untie: coccuvvenvieneieneinneinneennees {R}<ONUNTIE Y oo, 473
Native File Translate:oevvvvevnvinneennees {R}<{XIONXLATE Y .coiroieeeeeen. 473
Sign Off APL: ceeivniiiiiiiiiiiieiiniireeennes OOFF e 474
Object Representation:cceeueeeeennnneee ReOR Y oo 474
Search Path:covvvvieiiiiiiiiiiiiineeneen OPATH o 478
Program Function Key:ccoeeevvvennnnnn. Re{XIOPFKEY Y soeeoeeeeeeeeeeeannn. 480
Print PreciSion:eveeeveeneeeeinneenrenneennes PP e 481
Print Width: ...oovvvniniiiiiiiiiiiiiienenne, OPW e 482
Cross References:ccocvvvviviiivinnininenenn. REOREFS Y i, 483
Random Link: ...coovvvnvinniiniiniiiniinneinnees ORL et 484
Response Time Limit:ceeevvuneeennnnnnns ORTL o, 484
Save WOrkspace:eeeeevvenreerveneennnnn. {R}«{X}OSAVE Y., 485
Screen Dimensions:oeeeeeeveveeeeeennnenes REISD o 485
Session Namespace:ceeeeeeeennennnenn. OSE e 486
Execute (UNIX) Command: {RICOSH Yoo 486
Start (UNIX) Auxiliary Processor: X OSH Y e, 487
Shadow Name:ccvvvnvvvniinneinneinennnenn. OSHADOW Y oo 488
State INdiCator: v.vvvvurivneirniirneineineinnnn. ReOIST oo 489
Signal Event:ccceveeeeeiieeieeiinneennnnn. {XIOSIGNAL Y., 490
Size of ObJect: .eeuvvverrnereiinreeiiieeeennns. REOSIZE Yoo 491
Screen Map: .oveeveeeeeeeiieeeiieeerieeennnnas OSM e, 492
Screen Read: ..oovvveevinviiniiniiniineeinnenn, Re{XIOSR Y e, 495
SOUTCE: wuvvvneiuniineineeieereereeeneeineerneenns RESRC Y oo 499
State Indicator Stack:cceeeevvrnvvnnnenn. REOSTACK .o 500
State 0f ObJECt: vuuvverrvueeeiiiereeriieeenannn. REOSTATE Y oo 501
Set StOP: vevvnrerireiiieeiee et eaieas {R}«X OSTOP Y oot 502
QUETY SEOP: tevvveeeeiiieeeeriieeerrieeeenaians RQSTOP Y., 504
Set Access Control:oeevvenviniiniiniinnenn.. ReX OSVC Y e, 504
Query Access Control:cecuveeniinnennee ROSVC Y o 506
Shared Variable Offer:cccccevvenininnnnn. ReX OSVO Y oo, 506

Query Degree of Coupling: ReOSVO Y e, 508

Contents Xiii

Shared Variable Query:cc.cccvvunnees ReOSVQ Y i, 509
Shared Variable Retract Offer: ROSVR Y o, 509
Shared Variable State:vuunnennnns ReOSVS Y o, 509
Terminal Control:cceeevvvueeeevunnnnnnn. (OML) REOTC oo 510
Thread Child Numbers:c...cuue.ee.e. R<[TCNUMS Y., 511
Gt TOKENS: «vneeneeeeeeeeeeeieeeeeeeeeeeeaennns {R}«{X} OTGET Y eeoreeoeeeeeeeerennn. 511
This SPace: ...cccuueeevueieiieeeieeeieeerieeenn. ReOTHIS oo, 513
Current Thread Identity:cuun...ee. REOTID o, 514
Kill Thread:ccveeeeveneeeeiiiieeeeiieeeenenn. {R}I{XIOTKILL Y oo 514
Current Thread Name:cceeevvvnnnnnne. OTNAME ..o 515
Thread Numbers:ccevevveerenrenennnnnn. ROTNUMS .o, 515
Token Pool: ...ccvueeiiiiiieeeieeeieeevee, Re[TPOOL ..oovevieeeeeeeeeeeen, 516
Put TOKENS: ceneeneeneeneieeeeeeeeeeeeieeeaennen {R}«{X} OTPUT Y eooeeeeeeeeeeeenn. 516
SEt TIACE: eevvruneerrrieeerrnieeerriieeeeranns {R}«X OTRACE Y..oooorioireeeenn 517
QUETY TTaCE: vuunerrreneeriieeerrieeeeaeeeeenns ROTRACE Y oo, 518
Trap Event:ccevveeeevinieeeeiiieeeeiieees OTRAP oo 519
Token Requests:ceeevvuereeiunereeennnnnnnn. REOTREQ Y. 524
Time Stamp: ...ccevveevevieireeriiieeeriineennn. REOTS o, 524
Wait for Threads to Terminate:.............. RTSYNC Y e, 525
Unicode CONvert:cceeevvueeevennneennnnn. Re{X} OUCS Y oo, 526
Using (Microsoft .Net Search Path): OUSING. ..o 528
Verify & Fix Input:cceeeeeeeiecnnnnnns Re{XIOVFI Yoo, 529
Vector Representation:coeevvennennes REOVR Y e, 530
Workspace Available:cceeeeeeeennnne. REOWA o, 531
Windows Create Object:cceevvvnnnnnnnen. {R}IC{XIOWC Y oo 532
Windows Get Property:c.cccevveneennen. Re{XIOWG Y oo, 535
Windows Child Names:cocvenvunenenns Re{XIOWN Y oo, 536
Windows Set Property:eeeeeeeennnne. {XIOAWS Y e, 537
Workspace Identification: OWSID oo 538
Window EXPOS€: ...cvveeeeeerevrreieeeeennnnnn. OWX oo 538
Extended State Indicator: ReOXSTI oo, 539
Set External Variable:ceeveevunnnnns X OXT Y o 540
Query External Variable: REOXT Y o, 542
CHAPTER 7 System Commands..........ccocourmmmmnmmmmnnssssssssssssssssssssssssssnns 543
Command PreSentationcccveeviieriieiiieiiieiieesreesreesreesreeseeeestreestreeaneesseeesaeensens 544
List Classes: ..vevvvneeerrunrerreneeervneeennnnns JCLASSES .o, 545
Clear Workspace:oeevvevevnneernneennnnennn. JCLEAR oo 545
Windows Command Processor: JCMD cmd ..o, 546
Save Continuation:ccceeevueevennnnnn. JCONTINUE ..o, 547
Copy Workspace:uceeeevvveeeeevnnnnnnn. YJCOPY {ws {nms}} ..o, 548
Change SPace:eeeevvveeeeveeeerrnnneennn. JCS {nm} o 550
Drop Workspace:eeeeeevvvuuereeeennnns JDROP {WS} oo 550

Edit Object: .oovuviiinreiineiiieeeiieeiieeeinnes JED NMS i 550

Xiv

Contents

Erase Object:cuuvvevueeiiniiiieeeiieeeinnnnn, JERASE NMS oo 551
List EVents:cccvvvvivieeiiieeiiieeeiieeeinnnne, JEVENTS oo 552
List Global Defined Functions: YENS {nm} ., 552
Display Held Tokens:.......ccceeevvnneennnnnnn. JHOLDS ..o 553
List Workspace Library:ccceuuue... JLIB {dir} i 554
Load WOTKSPace:ccvvvvueeeeeerrvrnnnneaenns JLOAD {WS} eoeeoeeeeeeeeeeeeee, 555
List Methods:oeevvveeeeiiiieeeiiiieeeeiiinnens JMETHODS ... 556
Create Namespace:eeeevvveneervvnnnnns INS {nm} oo 557
List Global Namespaces:cceeevvennnns JOBJECTS {nm} ..cocoovririiiiinnn, 558
List Global Namespaces:ccvuueeeee. JOBS {nm} ..o, 558
Sign Off APL: ceeovniiiiiiiiiiiiiiiiiiieeeennes JOFF e 558
List Global Defined Operators: YOPS {nM} oo, 558
Protected COPY: cevvveneererneeererneeereneneennn. YPCOPY {ws {nms}} ... 559
LiSt Properties:cueeevveeeeennerenneennnnnns JPROPS oo 560
Reset State Indicator:ccecevueeennnne. JRESET o 560
Save WOrkspace:eeeeevveneeervenneennnnn. YJSAVE {WS} o, 561
Execute (UNIX) Command: YJSH {emd} o 562
State Indicator:cceeeeernvevneeneeennennnnnn.) ST e 563
State Indicator & Name List: YJSINL (e, 564
Thread Identity:ceeevvveeeeevieeeennnnnnns JTID {tid} oo, 565
List Global Defined Variables: JVARS {nm} ..o, 566
Workspace Identification: YWSID {WSY} oo, 566
Load without Latent Expression: JXLOAD {WS} .o, 567
CHAPTER 8 EIrror MeSSagescuummmmmenssmsssmsssssssssesssssssssesssssssssssssssnss 569
Standard EITOr ACHIONcccuiiiiiieeeiieeiee ettt ettt e eete e steeestreetaeeveeebeeesbeeeaveeesvens 570
APL EITOT MESSAZES ...eeeuetiieiiiieeeiiie ettt ettt ettt e ettt e st e e ettt e st e e e sabteesenbeeesateeesaes 575
Operating System Error MESSAZESvvevuvieriririieeiieeieeeieeereesieesreesereessseeseseessseesens 600
SYMDOLIC INAEX......o et s 603

Alphabetic INAeX........ccccriir s ————— 607

Chapter 1 Introduction

CHAPTER 1

Introduction

Workspaces

APL expressions are evaluated within a workspace. The workspace may contain
objects, namely operators, functions and variables defined by the user. APL
expressions may include references to operators, functions and variables provided by
APL. These objects do not reside in the workspace, but space is required for the actual
process of evaluation to accommodate temporary data. During execution, APL records
the state of execution through the STATE INDICATOR which is dynamically
maintained until the process is complete. Space is also required to identify objects in
the workspace in the SYMBOL TABLE. Maintenance of the symbol table is entirely
dynamic. It grows and contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved workspace
into the current workspace.

Under UNIX, workspace names must be valid file names, but are otherwise
unrestricted. See your UNIX documentation for details.

Under Windows, Dyalog APL workspaces are stored in files with the suffix ".DWS".
However, they are referred to from within APL by only the first part of the file name
which must conform to Windows file naming rules.

2 Dyalog APL/W Language Reference

Namespaces

A namespace is a name class 9 object in Dyalog APL. Namespaces are analogous to
nested workspaces.

‘Flat> APL Workspace Workspace with Namespaces
DISPLAY FOO MAT VEC
FOO MAT VEC DISPLAY
WsDoc_Init
WsDoc_Tree Tnit
WsDoc_Xref n Init
Tree line
. Xref [P3ge
WsDoc_prt_Init
WsDoc_prt_Page
WsDoc_current_Tline

They provide the same sort of facility for workspaces as directories do for filing
systems. The analogy might prove helpful:

Operation MS-DOS Namespace
Create MKDIR JNS or [NS
Change CD)CS

Relative name DIRI\DIR2\FILE

NS1.NS2.08B7J

Absolute name \DIR\FILE #.NS.0BJ
Name separator \ .

Top (Root) object \ #

Parent object .. ##

Chapter 1 Introduction 3

Major Benefits of Namespaces

Namespaces provide static (as opposed to dynamic) local names. This means that a
defined function can use local variables and functions which persist when it exits and
which are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL’s traditional name-clash problem is ameliorated in several ways.

e Workspaces can be arranged so that there are many fewer names at each namespace
level. This means that when copying objects from saved workspaces there is a much
reduced chance of a clash with existing names.

o Utility functions in a saved workspace may be coded as a single namespace and
therefore on being copied into the active workspace consume only a single name.
This avoids the complexity and expense of a solution which is sometimes used in
'flat' workspaces, where such utilities dynamically fix local functions on each call.

e In flat APL, workspace administration functions such as WSDOC must share names
with their subject namespace. This leads to techniques for trying to avoid name
clashes such as using obscure name prefixes like ' AAL1"'. This problem is now
virtually eliminated because such a utility can operate exclusively in its own
namespace.

The programming of GUI objects is considerably simplified.

e An object’s callback functions may be localised in the namespace of the object
itself.

o Static variables used by callback functions to maintain information between calls
may be localised within the object.

This means that the object need use only a single name in its namespace.

4 Dyalog APL/W Language Reference

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular arrangement
of items, each of which may be a single number, a single character, a namespace
reference (ref), another array, or the [JOR of an object. An array which is part of another
array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

e An array with 0 axes (rank 0) is called a scalar.
e An array with 1 axis (rank 1) is called a vector.
e An array with 2 axes (rank 2) is called a matrix.

e An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along each
axis of an array is called its shape. The shape of an array is itself a vector. Its first item
is the length of the first axis, its second item the length of the second axis, and so on.
An array whose length along one or more axes is zero, is called an empty array.

Depth

An array whose items are all simple scalars (i.e. single numbers, characters or refs) is
called a simple array. If one or more items of an array is not a simple scalar (i.e. is
another array, or a [JOR), the array is called a nested array. A nested array may contain
items which are themselves nested arrays. The degree of nesting of an array is called its
depth. A simple scalar has a depth of 0. A simple vector, matrix, or multi-dimensional
array has depth 1. An array whose items are all depth 1 subarrays has depth 2; one
whose items are all depth 2 subarrays has depth 3, and so forth.

Chapter 1 Introduction

Type

An array whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array whose
items contain both numeric and character elements is of MIXED type.

Numbers

Numbers are entered or displayed in conventional or scaled decimal form. On entry, a
decimal point is optional if there is no fractional part. On output, a number with no
fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:
a) an integer or decimal number called the mantissa,
b) the letter E or e,
¢) an integer called the scale, or exponent.
The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

12 23.24% 23.0 2.145E2
12 23.24% 23 214.5

Negative numbers are preceded by the high minus (™) symbol, not to be confused with
the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

Example

~22 2.145E72 T10.25
~22 0.02145 710.25

The empty vector (10) may be represented by the numeric constant € called ZILDE.

Dyalog APL/W Language Reference

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are
not displayed on output. The APL quote character itself must be entered as a pair of
APL quotes.

Examples

‘DYALOG APL'
DYALOG APL

"I DON''T KNOW'
I DON'T KNOW

*

Enclosed Elements

An array may be enclosed to form a scalar element through any of the following means:
e Dby the enclose function (<)
e Dby inclusion in vector notation

e as the result of certain functions when applied to arrays

Examples

(e¢1 2 3),c<'ABC'
1 2 3 ABC

(1 2 3) 'ABC'
1 23 ABC

Chapter 1 Introduction

Legal Names

APL objects may be given names. A name may be any sequence of characters, starting
with an alphabetic character, selected from the following:

0123456789 (butnot as the 1* character in a name)
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopgrstuvwxyz
AARARREGEEEEIIITONOOOOORUUOUYR
3433332¢6686711118R06666pUGGUDP
AA

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Note that using a standard Unicode font (rather than APL385 Unicode used in the table
above), the last row above would appear as the circled alphabet, [1 to [1.

Examples
Legal Illegal
THISAISAAANAME BAD NAME
X123 3+21
SALES S!H|PRICE
pjb_1 1_pjb

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow («).
Examples

A<'CHIPS WITH EVERYTHING'

A
CHIPS WITH EVERYTHING

X Y«'ONE' 'TWO'

X
ONE

Y
TWO

8 Dyalog APL/W Language Reference

Vector Notation

A series of two or more adjacent expressions results in a vector whose elements are the
enclosed arrays resulting from each expression. This is known as VECTOR (or
STRAND) NOTATION. Each expression in the series may consist of one of the

following:
a) a single numeric value;
b) a single character, within a pair of quotes;
c) more than one character, within a pair of quotes;
d) the name of a variable;
e) the evaluated input symbol [J;
f) the quote-quad symbol [I;
g) the name of a niladic, defined function yielding a result;
h) any other APL expression which yields a result, within parentheses.
Examples
pA«<2 4 10
3

PTEXT«'ONE' 'TWO'
2

Numbers and characters may be mixed:

pX«<'THE ANSWER IS ' 10

X[1]
THE ANSWER IS

X[2] + 32
42

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair '«
indicates the phrase 'is equivalent to'.

Chapter 1 Introduction 9

1 2 > (1)(2) <=1 (2) <> (1) 2
2'X'3 «» 2 'X' 3 <> (2) ('X') (3)
1 (2+42) <> (1) ((2+2)) < ((1)) (2+2)

Vector notation may be used to define an item in vector notation:

pX « 1 (2 3 4) ('THIS' 'AND' 'THAT')
X[2]
2 3 4

X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:

Y « (2+2) 'IS' 4
Y
IS .

The following identity holds:

A B C <> (cA), (cB), <C

Restructuring Arrays

A class of primitive functions re-structures arrays in some way. Arrays may be input
only in scalar or vector form. Structural functions may produce arrays with a higher
rank. The Structural functions are reshape (p), ravel, laminate and catenate (,), reversal
and rotation (¢), transpose (&), mix and take (1), split and drop (¥), and enclose (<).
These functions are described in Chapter 4.

Examples
2 2p1 2 3 4
12
3 4
2 2 4p'ABCDEFGHIJKLMNOP'
ABCD
EFGH
IJKL

10

Dyalog APL/W Language Reference

42 4p'COWSHENS'
COWS HENS

Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin. A
number is separated from the next adjacent element by a single space. The number of
significant digits to be printed is determined by the system variable JPP whose default
value is 10. The fractional part of the number will be rounded in the last digit if it
cannot be represented within the print precision. Trailing zeros after a decimal point
and leading zeros will not be printed. An integer number will display without a decimal
point.

Examples

0.1 1.0 1.12
0.1 1 1.12

IAI 2 IBI Icl
A 2 BC

+3 2 6

0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in [JPP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is represented
in scaled form. The mantissa will display up to (PP significant digits, but trailing zeros
will not be displayed.

Examples
Opp<3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E77

Simple matrices are displayed in rectangular form, with one line per matrix row. All
elements in a given column are displayed in the same format, but the format and width
for each column is determined independently of other columns. A column is treated as
numeric if it contains any numeric elements. The width of a numeric column is
determined such that the decimal points (if any) are aligned; that the E characters for
scaled formats are aligned, with trailing zeros added to the mantissae if necessary, and
that integer forms are right-adjusted one place to the left of the decimal point column (if
any). Numeric columns are right-justified; a column which contains no numeric
elements is left-justified. Numeric columns are separated from their neighbours by a
single column of blanks.

Chapter 1 Introduction 11

Examples

2 4p'HANDFIST'
HAND
FIST

1 23 90.x625
6 2 5
12 4 10
18 6 15

2 3p2 4+ 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 4p4 'A' 'B' 5 70.000000003 ‘C' 'D' 123.56
LEO AB 5
“3E79 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Examples

13
12 3

c13
12 3

cc13
123

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' 4)
ONE 1 TWO 2 THREE 3 FOUR &4

2 4p'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR &

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated by
one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed in
the same manner as matrices.

12

Dyalog APL/W Language Reference

Examples
2 3 4pr2k
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
3 11 3p'THEREDFOX'
THE
RED
FOX

The power of this form of display is made apparent when formatting reports.

Examples

+AREAS«'West' 'Central' 'East'
West Central East

+PRODUCTS<«'Biscuits' 'Cakes' 'Buns' 'Rolls'
Biscuits Cakes Buns Rolls

SALES«50 5.25 75 250 20.15 900 500
SALES,«80.98 650 1000 90.03 1200
+SALES«4 3pSALES
50 5.25 75
250 20.15 900
500 80.98 650
1000 90.03 1200

" ' PRODUCTS 5., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650

Rolls 1000 90.03 1200

Chapter 1 Introduction 13

If the display of an array is wider than the page width, as set by the system variable
0PV, it will be folded at or before [JPW and the folded portions indented six spaces. The
display of a simple numeric or mixed array may be folded at a width less than [JPW so
that individual numbers are not split across a page boundary.

Example
OPW<k40

73 20p100
54 22 5 68 68 9% 39 52 84 4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 L4 77 48 24 28 36 17 49

1 39 7 42 69 49 94

76 100 37 25 99 73 76

90 91 7 91 51 52 32

The Display Function

DISPLAY is a defined function distributed with Dyalog APL which may be used to
illustrate the structure of an array. DISPLAY is monadic. Its result is a character
matrix containing a pictorial representation of its argument. DISPLAY is used
throughout this manual to illustrate examples. An array is illustrated with a series of
boxes bordering each sub-array. Characters embedded in the border indicate rank and
type information. The top and left borders contain symbols that indicate its rank. A
symbol in the lower border indicates type. The symbols are defined as follows:

Vector.

Matrix or higher rank array.
Empty along last axis.

Empty along other than last axis.
Nested array.

Numeric data.

Character data.

Mixed character and numeric data.
[JOR object.

array of refs.

I tm e 0 «

H A +

DISPLAY 'ABC' (1 4pl 2 3 4)

| Lo--. e .
| 1ABC| 1 2 3 4| |
I]]]]

_ ~—————— |

14 Dyalog APL/W Language Reference

Prototypes and Fill Items

Every array has an associated prototype which is derived from the array's first item.

If the first item is a number, the prototype is 0. Otherwise, if the first item is a character,

the prototype is ' ' (space). Otherwise, if the first item is a (ref to) an instance of a
Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples:
Array Prototype
12 3.4 0
2 3 5p'hello’ 'hello’
99 'b' 66 0
(1 2)(3 4+ 5) 00
((1 2)3)(4+ 5 6) (0 0)0
‘hello' 'world' ' '
[ONEW MyClass MyClass
(88 ([ONEW MyClass)'X')7 | 0 MyClass

Chapter 1 Introduction

15

Fill Items

Fill items for an overtake operation, are derived from the argument's prototype. For
eachOor ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and
for each class reference in the prototype, there is a ref to a (newly constucted and
distinct) instance of that class that is initialised by the niladic (default) constructor for
that class, if defined.

Examples:

b+1 2
1200
kt'ab'
ab
4L1(1 2)(3 4 5)
12 345 00 00O
21[0NEW MyClass
#.[Instance of MyClass] #.[Instance of MyClass]

In the last example, two distinct instances are constructed (the first by JNEW and the
second by the overtake).

Fill items are used in a number of operations including:
First (2 or 1) of an empty array

Fill-elements for overtake
For use with the Each operator on an empty array

16

Dyalog APL/W Language Reference

Expressions

An expression is a sequence of one or more syntactic tokens which may be symbols or
constants or names representing arrays (variables) or functions. An expression which
produces an array is called an ARRAY EXPRESSION. An expression which produces
a function is called a FUNCTION EXPRESSION. Some expressions do not produce a
result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by parentheses.
If an entire expression results in an array that is not assigned to a name, then that array
value is displayed. (Some system functions and defined functions return an array result
only if the result is assigned to a name or if the result is the argument of a function or
operator.)

Examples
X<2x3-1
2x3-1

4
(2x3)-1

5

Either blanks or parentheses are required to separate constants, the names of variables,
and the names of defined functions which are adjacent. Excessive blanks or sets of
parentheses are redundant, but permitted. If F is a function, then:

Fo2es F(2) < (F)2 <> (F) (2) <> F (2) < F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

2 e (2)(2) > (<) 2

Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic operator
must have its right argument available when encountered. The following syntactical
forms are accepted:

(+.x) <> (#).x > +,(x)
The use of parentheses in the following examples is not accepted:

+(.)x or (+.)x

Chapter 1 Introduction 17

Functions

A function is an operation which is performed on zero, one or two array arguments and
may produce an array result. Three forms are permitted:

e NILADIC defined for no arguments
e MONADIC defined for a right but not a left argument
e DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially represents
both a monadic and a dyadic function, though it might not be defined for both. The
usage in an expression is determined by syntactical context. If the usage is not defined
an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is
the result of the entire expression to its right which must be an array. A dyadic function
has short scope on the left; that is, the left argument of the function is the array
immediately to its left. Left scope may be extended by enclosing an expression in
parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be displayed
on completion of evaluation of the expression. This applies on assignment to a variable
name. It applies for certain system functions, and may also apply for defined functions.

Examples
10x5-2x4
~30
2xl
8
5-8
-3
10x73
—30
(10x5)-2x4

42

18

Dyalog APL/W Language Reference

Defined Functions

Functions may be defined with the system function 0F X, or with the function editor. A
function consists of a HEADER which identifies the syntax of the function, and a
BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({ }). If an ambivalent function is called monadically, the
left argument has no value inside the function. If the explicit result is to be suppressed
for display purposes, the result is shown within braces. A function need not produce an
explicit result. Refer to Chapter 2 for further details.

Example

vV R«{A} FOO B
[1] R+<>'MONADIC' 'DYADIC'[OIO+0#[NC'A"]

[2] v

FOO 1
MONADIC

‘X' FOO 'Y'
DYADIC

Functions may also be created by using assignment («).

Chapter 1 Introduction 19

Function Assignment & Display

The result of a function-expression may be given a name. This is known as
FUNCTION ASSIGNMENT (see also Dynamic Functions). If the result of a function-
expression is not given a name, its value is displayed. This is termed FUNCTION
DISPLAY.

Examples
PLUS«+
PLUS

+
SUM«+/
SUM

+/

Function expressions may include defined functions and operators. These are displayed
as a V followed by their name.

Example
V R«<MEAN X A Arithmetic mean
[1] Re<(+/X)+pX
\
MEAN
VMEAN
AVERAGE<MEAN
AVERAGE
VMEAN
AVG<MEANe® ,
AVG

VMEAN o,

20 Dyalog APL/W Language Reference

Operators

An operator is an operation on one or two operands which produces a function called a
DERIVED FUNCTION. An operand may be a function or an array. Operators are not
ambivalent. They require either one or two operands as applicable to the particular
operator. However, the derived function may be ambivalent. The derived function
need not return a result. Operators have higher precedence than functions. Operators
have long scope on the left. That is, the left operand is the longest function or array
expression on its left. The left operand may be terminated by:

1. the end of the expression

2. the right-most of two consecutive functions

3. afunction with an array to its left

4. an array with a function to its left

5. an array or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of an operator

is the single function or array on its right. Right scope may be extended by enclosing an
expression in parentheses.

Examples
P X«'WILLIAM' 'MARY' 'BELLE'
7 4 5
pop X
1 1 1
(pep) X
1 1 1

Oo<«odVR™'PLUS"' 'MINUS'
VvV R«<A PLUS B
[1] R<A+B
v
vV R«<A MINUS B
[1] R<A-B
v

PLUS/1 2 3 4
10

Chapter 1 Introduction 21

Defined Operators

Operators may be defined with the system function 0OF X, or with the function editor. A
defined operator consists of a HEADER which identifies the syntax of the operator, and
a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax defines
the operator name, its operand(s), the argument(s) to its derived function, and the result
(if any) of its derived function. The names of the operator and its operand(s) are
separated from the name(s) of the argument(s) to its derived function by parentheses.

Example

v R«A(F AND G)B
[1] R<(A F B)(A G B)
v

The above example shows a dyadic operator called AND with two operands (F and G).
The operator produces a derived function which takes two arguments (A and B), and
produces a result (R).

12 +AND+ 4
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) &4
12 3 4 12 5 4

12 (x AND 5) 4
48 12 5 4

22 Dyalog APL/W Language Reference

Namespace Syntax

Names within namespaces may be referenced explicitly or implicitly. An explicit
reference requires that you identify the object by its full or relative pathname using a
'. ' syntax; for example:

X.NUMB « 88

sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99
calls dyadic function FOO in namespace UTIL with left and right arguments of 88 and
99 respectively. The interpreter can distinguish between this use of ' . ' and its use as
the inner product operator, because the leftmost name: UTIL is a (class 9) namespace,
rather than a (class 3) function.
The general namespace reference syntax is:

SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR is
any APL expression to be resolved in the resulting namespace.

There are two special space names:

is the top level or 'Root' namespace.
is the parent or space containing the current namespace.

0SE is a system namespace which is preserved across workspace load and clear.

Examples
WSDOC.PAGE.NO +<« 1 A Increment WSDOC page count
#.0ONL 2 A Variables in root space
UTIL.OFX 'Z<«DUP A' "'"Z<«A A' A Fix remote function
##.JED'FOO' A Edit function in parent space

[OSE.RECORD « PERS.RECORD A Copy from PERS to [SE

UTIL.(OEX ONL 2) A Expunge variables in UTIL

(=0SE #).(e>40NL 9).(ONL 2) A Vars in first [SE
A namespace.

UTIL.2STRING A Execute STRING in UTIL space

Chapter 1 Introduction 23

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by JEXPORT and PATH. If you reference a name that is
undefined in the current space, the system searches for it in the list of exported names
defined for the namespaces specified by JPATH. See JEXPORT and JPATH for further
details.

Evaluation

When the interpreter encounters a namespace reference, it :

- Switches to the namespace.
- Evaluates the name.
- Switches back to the original namespace.

If for example, in the following, the current namespace is # . W, the interpreter evaluates
the line:

A « X.Y.DUP MAT
in the following way:

- Evaluate array MAT in current namespace W to produce argument for function.
- Switch to namespace X .Y within W,

- Evaluate function DUP in namespace W. X . Y with argument.

- Switch back to namespace W,

- Assign variable A in namespace W.

Static Vs Dynamic Localisation

The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced by a
defined function or operator. If the name does not appear in the state indicator, then the
workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' namespace.
When a name is referenced, the interpreter searches only those lines of the state
indicator which belong to the home namespace. If the name does not appear in any of
these lines, the home namespace-global value is assumed.

24

Dyalog APL/W Language Reference

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FNU4, then:

FN1:
is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:
is evaluated in XX
can see its own dynamic local names
can see global names in XX

FN3:
is evaluated in #
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

FNL4:
is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from and in
addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

JNS NS1 A Make a namespace called NS1
NS1.A«1 A and populate it with variables A
NS1.B<«2 3pib A and B

NS1 A expression results in a ref

#.NS1
You may assign a ref ; for example:

X<NS1
X
#.NS1

In this case, the display of X informs you that X refers to the named namespace #.NS1.

Chapter 1 Introduction 25

You may also supply a ref as an argument to a defined or dynamic function:

vV FOO ARG
[1] ARG

v

FOO NS1
#.NS1

The name class of a ref’is 9.

gnc 'X!
9

You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:

X.A
1

X.B
123
L 56
Notice that refs are references to namespaces, so that if you make a copy, it is the
reference that is copied, not the namespace itself. This is sometimes referred to as a
shallow as opposed to a deep copy. It means that if you change a ref, you actually
change the namespace that it refers to.

X.A+<1
X.A
2
NS1.A
2

Similarly, a ref passed to a defined function is call-by-reference, so that modifications to
the content or properties of the argument namespace using the passed reference, persist
after the function exits. For example:

V FOO nsref
[1] nsref.B+<nsref.A
\'

FOO NS1

NS1.8B
3 45
6 7 8

26

Dyalog APL/W Language Reference

FOO X
NS1.8B

56 7
8 9 10

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

X.(C«AxB)
X.C

10 12 14

16 18 20
NS1.C

10 12 14

16 18 20

Unnamed Namespaces

The monadic form of NS makes a new (and unique) unnamed namespace and returns a
ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

The first record is represented by JOHN which is a ref to an unnamed namespace:

JOHN<[INS "'
JOHN
#.[Namespace]

JOHN.FirstName<«'John'
JOHN.FirstName
John

JOHN.LastName<«'Smith'
JOHN.Age<«50

Data variables for the second record, PAUL, can be established using strand, or vector,
assignment:

PAUL<[INS "'
PAUL.(FirstName LastName Age<«'Paul' 'Brown' L4l)

Chapter 1 Introduction 27

The function SHOW can be used to display the data in each record (the function is split
into 2 lines only to fit on the printed page). Notice that its argument is a ref.

V R«<SHOW PERSON
[1] R<«PERSON.FirstName,' ',PERSON.LastName
[2] R, «' is ',sPERSON.Age

v

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is Lk

An alternative version of the function illustrates the use of the :With :EndWith
control structure to execute an expression, or block of expressions, within a namespace:

V R«<SHOW1 PERSON

[1] :With PERSON
[2] R«FirstName,' ',LastName,' is ', (3Age)
[3] :EndWith
v
SHOW1 JOHN

John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply
using parentheses.

V R«SHOW2 PERSON
[1] R<«PERSON.(FirstName,' ',LastName,' is ',(3Age))
\'4

SHOW2 PAUL
Paul Brown is Lk

Dynamic functions also accept refs as arguments:
SHOW3+«{

w.(FirstName,' ',LastName,' is ',sAge)
}

SHOW3 JOHN
John Smith is 50

28

Dyalog APL/W Language Reference

Arrays of Namespace References

You may construct arrays of refs using strand notation, catenate (,) and reshape (p).

EMP<JOHN PAUL
pEMP
2
EMP
#.[Namespace] #.[Namespace]

Like any other array, an array of refs has name class 2:

ONC 'EMP'
2

Expressions such as indexing and pick return refs that may in turn be used as follows:
EMP[1].FirstName
John

(22EMP) . Age
Ly

The each () operator may be used to apply a function to an array of refs:

SHOW 'EMP
John Smith is 50 Paul Brown is U4

An array of namespace references (refs) to the left of a “.’ is expanded according to the
following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp > (x.exp)(y.exp)
If exp evaluates to a function, the items of its argument array(s) are distributed to each
referenced function. In the dyadic case, there is a 3-way distribution among: left

argument, referenced functions and right argument.

Monadic function f: (x y).f de > (x.f d)(y.f e)
Dyadic function g: ab(xy).g de > (a x.gd)(by.ge)

An array of refs to the left of an assignment arrow is expanded thus:
(x y).a<c d +> (x.a<«c)(y.a<«d)

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp is identical to the scalar construct: ref . exp.

Chapter 1 Introduction 29

Note that the expression to the right of the .’ pervades a nested array of refs to its left:
((u v)(x y)).exp » ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). —, the final number of
‘leaf’ terms is the product of the number of refs at each level.

Examples:
JOHN.Children<«[NS™"'"' "'
pJOHN.Children

JOHN.Children[1].FirstName<«'Andy'
JOHN.Children[1].Age<«23

JOHN.Children[2].FirstName<«'Katherine'
JOHN.Children[2].Age«19

PAUL.Children<[INS™"'"' "'
PAUL.Children[1].(FirstName Age<«'Tom' 25)
PAUL.Children[2].(FirstName Age<«'Jamie' 22)
pEMP

(2EMP).Children. (FirstName Age)
Andy 23 Katherine 19

DISPLAY (22EMP).Children.(FirstName Age)

| o——------ . Pmmmmmmm——e- |
I R IR
| | |Tom| 25 | | |Jamie| 22 | |
| | == | | '----- ' ||
I IE _________ 1 IE ___________ 1 |
lE ____________________________ 1
EMP.Children A Is an array of refs
#.[Namespace] #.[Namespace] #.[Namespace]

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

30 Dyalog APL/W Language Reference

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The
conformability rules are the same as for scalar (pervasive) dyadic primitive functions
such as ‘+’. The mechanism can be viewed as a way of naming the parts of a structure.

Examples:

EMP. (FirstName Age)
JOHN 43 PAUL 44

EMP. (FirstName Age)<«('Jonathan' 21)('Pauline' 22)

EMP.(FirstName Age)
Johnathan 21 Pauline 22

A Distributed assignment is pervasive
JOHN.Children.(FirstName Age)

Andy 23 Katherine 19
JOHN.Children.(FirstName Age)<«('Andrew' 21)('Kate' 9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

More Examples:
((a b)(c d))«(1 2)(3 4) A a+l o b«2 ¢ c«3 ¢ d«k

((Oio Om1)vec)«0 Oav A Jio«0 ¢ Om1«0 o vec+[av
(i (j k))+«1 2 A i+tel O j+e2 0 k+<«2
A Naming of parts:
((first last) sex (street city state))«nopvec
A Distributed assignment in :For Tloop:
:For (i j)(k 1) :In array
A Ref array expansion:

(x y).(first last)«('John' 'Doe')('Joe' 'Blow')
(f1 f2).(bl b2).Caption«c'OK' 'Cancel’

Chapter 1 Introduction 31

A Structure rearrangement:

rotatel«{ A Simple binary tree rotation.
(a b c)d ecw
a b(c de)

rotate3«{ A Compound binary tree rotation.

(a b(c d e))f g«w
(a b c)d(e f g)

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

JOHN.PLOT«{twp™'0"}
JOHN.PLOT 110
1
ao
aoo
aoog
a000a
000000
0000000
00000000
000000000
0000000000

PAUL.PLOT«{(w, "1)p"'O"
PAUL.PLOT 10
0

o o o o o

o o o |

OOOOoOoOnO

o | e o | o

o o o o o o o o |
OOOoOoOoOoOoOoOod -

o | o |

EMP.PLOTc110 emporary vector of functions)
O O

|

oo O
ooo

a0o0

a0000

Q00000

a000000

00000000

000000000
0000000000

OOOa»
o o) o | o o

a
|
H|
a
g
g
a

o o o | e o
OOOOOoOo0OonO

o o o o o o o
OOoOoOoOoOoOoOoOoo

32 Dyalog APL/W Language Reference

(x
varx

funx
varx

varx

varx

varx

varx

funx
varx

funx
varx

funu
varu

2 3

y).ONL 2 3
funy

(x y).0ONLe2 3
funy
vary

(x y).(ONL™)e2 3

funx vary funy
'v'(x y).ONL 2 3
'vf'(x y).ONL 2 3
funy
‘vf'(x y).0ONLc2 3
funy
x.ONL 2 3

(x y).0ONLe2 3
funy
vary

((u v)(x y)).0ONLee2 3
funv funx funy
varv varx vary

(1 2)3 4(w(x y)z).+1 2(3 4)

55 78

tvars, y:fns

x&y: vars&fns

x&y: separate vars&fns
x:v-vars, y:v-fns
x:v-vars, y:f-fns
x:v-vars&fns,

y:f-vars&fns

depth 0 ref

depth 1 refs

depth 2 refs

argument distribution.

Chapter 1 Introduction 33

Operators

A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to an

argument, it executes in its home namespace,

the operator was invoked or defined.

Examples
VAR<99
NS X
#.X
X.VAR<77
X.OFX'Z«FN R' 'Z«R,VAR'
NS Y
#.Y
Y.VAR<88
Y.OFX'Z«(F OP)R' 'Z«F R'
X.FN"13
177 277 377
X.FN 'VAR:'
VAR: 77
X.FN Y.OP 'VAR:'
VAR: 77
¢ Y.OP'VAR'
99
Summary

irrespective of the namespace from which

€ #.VAR

€ X.VAR

¢ Y.VAR

Apart from its use as a decimal separator (3. 14), .’ is interpreted by looking at the

type or class of the expression to its left:

Template | Interpretation Example

°. Outer product 2 3 o,x 45
function. | Inner product 2 3 +.x 45

ref. Namespace reference 2 3 x.foo 4 5
array . Reference array expansion | (x y).[0ncc'foo'

34 Dyalog APL/W Language Reference

Threads

Overview

Dyalog APL supports multithreading - the ability to run more than one APL expression
at the same time.

This unique capability allows you to perform background processing, such as printing,
database retrieval, database update, calculations, and so forth while at the same time
perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.
A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the new primitive
operator ‘spawn’: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling environment
is paused, pendent on the return of the called function. With an asynchronous call, both
calling environment and called function proceed to execute concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread
has a unique thread number, with which, for example, its presence can be monitored or
its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace
availability. This implies a hierarchy in which a thread is said to be a child thread of its
parent thread. The base thread at the root of this hierarchy has thread number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching tree in
which the path from the base to each leaf is a thread.

Chapter 1 Introduction 35

When a parent thread terminates, any of its children which are still running, become the
children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point, the
sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any still in
use. The sequence is reinitialised when a)RESET command is issued, or the active
workspace is cleared, or a new workspace is loaded. A workspace may not be saved
with threads other than the base thread: 0, running.

Threads introduce new language elements.

e Primitive operator, spawn: &.

e System functions: JTID, OTCNUMS, OTNUMS, OTKILL, OTSYNC.

e An extension to the GUI Event syntax to allow asynchronous callbacks.

e A control structure: :Ho1d.

e System commands:)HOLDS,) TID.

e Extended)SI and) SINL display.

Running CallBack Functions as Threads

A callback function is associated with a particular event via the Event property of the
object concerned. A callback function is executed by [IDQ when the event occurs, or by

OnQ.

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:

(OWS'Event' 'Select' 'DoIt&'

tells DQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object.

36

Dyalog APL/W Language Reference

Thread Switching

Programming with threads requires care.

The interpreter may switch between running threads at the following points:
e Between any two lines of a defined (or dynamic) function or operator.

e While waiting for a [IDL to complete.

e While waiting for a JFHOLD to complete.

e While awaiting input from:
0oQ
OsRr
geo
The session prompt or [J: or [].

e While awaiting the completion of an external operation:
A call on an external (AP) function.
A call on a [JNA (DLL) function
A call on an OLE function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread in
question passes through the switch point. It is the task of the application programmer to
organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
:Ho 1d control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution of a
high-priority callback. This is a callback function that is invoked by a high-priority
event which demands that the interpreter must return a result to Windows before it may
process any other event. Such high-priority events include Configure, ExitWindows,
DateTimeChange, DockStart, DockCancel, DropDown. It is therefore not permitted to
use a :Ho1d control structure in a high-priority callback function.

Chapter 1 Introduction 37

Name Scope

APL’s name scope rules apply whether a function call is synchronous or asynchronous.
For example when a defined function is called, names in the calling environment are
visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and ‘sibling’ functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of local
name clashes. For example, a GUI application can accommodate multiple concurrent
instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute, both
child and parent functions may modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those children
will thenceforward ‘see’ local names in the environment that called the parent function.
In cases where a child function relies on its parent’s environment (the setting of a local
value of [JIO for example), this would be undesirable, and the parent function would
normally execute a JTSYNC in order to wait for its children to complete before itself
exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls a
new function (either synchronously or asynchronously), names in the new function are
beyond the purview of the original child. In other words, a function can only ever see its
calling stack decrease in size — never increase. This is in order that the parent may call
new defined functions without affecting the environment of its asynchronous children.

38 Dyalog APL/W Language Reference

Using Threads

Put most simply, multithreading allows you to appear to run more than one APL
function at the same time, just as Windows (or UNIX) appears to run more than one
application at the same time. In both cases this is something of an illusion, although it
does nothing to detract from its usefulness.

Dyalog APL implements an internal timesharing mechanism whereby it shares
processing between threads. Although the mechanics are somewhat different, APL
multithreading is rather similar to the multitasking provided by Windows 95/98 and NT.
If you are running more than one application, Windows switches from one to another,
allocating each one a certain time slice before switching. At any point in time, only one
application is actually running; the others are paused, waiting.

If you execute more than one Dyalog APL thread, only one thread is actually running;
the others are paused. Each APL thread has its own State Indicator, or SI stack. When
APL switches from one thread to another, it saves the current stack (with all its local
variables and function calls), restores the new one, and then continues processing.

Stack Considerations

When you start a thread, it begins with the SI stack of the calling function and sees all
of the local variables defined in all the functions down the stack. However, unless the
calling function specifically waits for the new thread to terminate (see JTSYNC), the
calling functions will (bit by bit, in their turn) continue to execute. The new thread’s
view of its calling environment may then change. Consider the following example:

Suppose that you had the following functions: RUN[3] calls INIT which in turn calls
GETDATA but as 3 separate threads with 3 different arguments:

V RUN;A;B
A<1

] B<'Hello World'

] INIT

] CALC

] REPORT

v INIT;C;D
[1] C<«D+«0
[2] GETDATA&'Sales'
[3] GETDATA& 'Costs'
[4] GETDATA& 'Expenses'

Chapter 1 Introduction 39

When each GETDATA thread starts, it immediately sees (via [JSI) that it was called by
INIT which was in turn called by RUN, and it sees local variables A, B, C and D.
However, once INIT[4] has been executed, INIT terminates, and execution of the
root thread continues by calling CALC. From then on, each GETDATA thread no longer
sees INIT (it thinks that it was called directly from RUN) nor can it see the local
variables C and D that INIT had defined. However, it does continue to see the locals A
and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would still
see the values defined by RUN and not those defined by CALC. However, if CALC were
to modify A and B (as globals) without localising them, the GETDATA threads would
see the modified values of these variables, whatever they happened to be at the time.

Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semi-global
object (including GUI objects) is inherently dangerous (i.e. a source of programming
error) if more than one thread is running. Worse still, programming errors of this sort
may not become apparent during testing because they are dependent upon random
timing differences. Consider the following example:

vV BUG;SEMI_GLOBAL
[1] SEMI_GLOBAL<«O
[2] FOO& 1
[3] GOo& 1

\'
vV FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] tEndIf
\'4
v GOO

[1] SEMI_GLOBAL<«1

40

Dyalog APL/W Language Reference

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual
sequence of execution may be:

BUG[1] - BUG[2] » FOO[1] - FOO[2] ~»
DO_SOMETHING[1]
or
BUG[1] - BUG[2] - BUG[3] - GOO[1] ~»
FOO[1] » FOO[2] - FOO[3] ~»
FOO[4] » DO_SOMETHING_ELSE[1]

This is because APL may switch from one thread to another between any two lines in a
defined function. In practice, because APL gives each thread a significant time-slice, it
is likely to execute many lines, maybe even hundreds of lines, in one thread before
switching to another. However, you must not rely on this; thread-switching may occur
at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO
thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to
DO_SOMETHING will be 1 and not 0. Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the value
of SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you may use
diamonds instead of separate statements, e.g.

:If SEMI_GLOBAL=0 o DO_SOMETHING SEMI_GLOBAL

Even better, although less efficient, you may use : Ho 1d to synchronise access to the
variable, for example:

v FOO

[1] tHold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] tEndIf
[7] :EndHo1d

\'4

v GOO
[1] tHold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL<«1

[3] :EndHo1d
A%

Chapter 1 Introduction 41

Now, although you still cannot be sure which of FOO and GOO will run first, you can be
sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to : Ho1d is completely arbitrary, so long as
threads competing for the same resource use the same string.

A Caution

These types of problems are inherent in all multithreading programming languages, and
not just with Dyalog APL. If you want to take advantage of the additional power
provided by multithreading, it is advisable to think carefully about the potential
interaction between different threads.

Threads & Niladic Functions

In common with other operators, the spawn operator & may accept monadic or dyadic
functions as operands, but not niladic functions. This means that, using spawn, you
cannot start a thread that consists only of a niladic function

If you wish to invoke a niladic function asynchronously, you have the following
choices:

e Turn your niladic function into a monadic function by giving it a dummy argument
which it ignores.

e Call your niladic function with a dynamic function to which you give an argument
that is implicitly ignored. For example, if the function NIL is niladic, you can call it
asynchronously using the expression: {NIL}& 0

e Call your function via a dummy monadic function, e.g.
vV NIL_M DUMMY
[1] NIL

\'
NIL_M& "'

e Use execute, e.g.
¢& 'NIL'

Note that niladic functions can be invoked asynchronously as callback functions. For
example, the statement:

(OWS'Event' 'Select' 'NIL&'

will execute correctly as a thread, even though NIL is niladic. This is because callback
functions are invoked directly by (JDQ rather than as an operand to the spawn operator.

42

Dyalog APL/W Language Reference

Threads & External Functions

External functions in dynamic link libraries (DLLs) defined using the ONA interface
may be run in separate C threads. Such threads:

e take advantage of multiple processors if the operating system permits.

e allow APL to continue processing in parallel during the execution of a [JNA
function.

When you define an external function using [INA, you may specify that the function be
run in a separate C thread by appending an ampersand (&) to the function name, for
example:

‘beep'[INA'user32|MessageBeep& i
A MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded [OJNA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads may
then run in parallel.

Note that when the [IJNA call finishes and returns its result, its new C-thread is retained
to be re-used by any subsequent multithreaded [INA calls made within the same APL
thread. Thus any APL thread that makes any multi-threaded [ONA calls maintains a
separate C-thread for their execution. This C-thread is discarded when its APL thread
finishes.

Note that there is no point in specifying a [JNA call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your ONA call needs to access an APL GUI object (strictly, a window or
other handle) it should normally run within the same C-thread as APL itself, and not in
a separate C-thread. This is because Windows associates objects with the C-thread that
created them. Although you can use a multi-threaded [ONA call to access (say) a Dyalog
APL Form via its window handle, the effects may be different than if the [JNA call was
not multi-threaded. In general, [JNA calls that access APL (GUI) objects should not be
multi-threaded.

If you wish to run the same [ONA call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-safe,
must be prevented from running concurrently by using the : Ho1d control structure.
Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

Chapter 1 Introduction 43

Synchronising Threads

Threads may be synchronised using fokens and a token pool.

An application can synchronise its threads by having one thread add tokens into the
pool whilst other threads wait for tokens to become available and retrieve them from the
pool.

Tokens posess two separate attributes, a type and a value.

The type of a token is a positive or negative integer scalar. The value of a token is any
arbitrary array that you might wish to associate with it.

The token pool may contain up to 2*31 tokens; they do not have to be unique neither in
terms of their types nor of their values.

The following system functions are used to manage the token pool:

gTpuT Puts tokens into the pool.

OTGET If necessary waits for, and then retrieves some tokens from the pool.

OTPOOL | Reports the types of tokens in the pool

OTREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want one
thread to reach a certain point in processing before a second thread can continue. Pehaps
the first thread performs a calculation, and the second thread must wait until the result is
available before it can be used.

This can be achieved by having the first thread put a specific type of token into the pool
using TPUT. The second thread waits (if necessary) for the new value to be available
by calling OTGET with the same token type.

Notice that when [JTGET returns, the specifed tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For
example, a semaphore to control a number of resources can be implemented by keeping
that number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

A second complex example is that of a latch which holds back a number of threads until
the coast is clear. At a signal from another thread, the latch is opened so that all of the
threads are released. The latch may (or may not) then be closed again to hold up
subsequently arriving threads. A practical example of a latch is a ferry terminal.

44 Dyalog APL/W Language Reference

Semaphore Example

A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and return
it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets open at
any one time.

sock<99 A socket-token
any +ive number will do).
OTPUT 5/sock A add 5 socket-tokens to pool.

V sock_open

[1] :If sock=[JTGET sock A grap a socket token
[.] v A do stuff.
[.] OTPUT sock A release socket token
[.] :Else
[.] error'sockets off' A sockets switched off by
retract (see below).
[.] :EndIf
\4
0 OTPUT Otreq Otnums A retract socket "service"

with 0 value.

Chapter 1 Introduction 45

Latch Example

A latch holds back a number of threads until the coast is clear. At a signal from another
thread, the latch is opened so that all of the threads are released. The latch may (or may
not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

tkt<b A 6-token: ferry ticket.
V car ...

[1] OTGET tkt A await ferry.

[2] “e
VvV ferry

[1] arrives in port
[2] OTPUT(t,/0Otreq Otnums)ntkt A ferry tickets for all.

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_placest between JTPUT and its argument. If fewer
cars than the ferry capacity are waiting, the t will fill with trailing Os. This will not
cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for traffic,
the barrier could be opened permanently by putting a negative ticket in the pool.:

OTPUT -tkt A open ferry barrier permananently.
Cars could choose to take the last ferry if there are places:

V car ...
[1] :Select OTGET tkt
[2] :Case tkt ¢ take the last ferry.
[3] :Case -tkt ¢ ferry full: take the new bridge.
(4] :End

The above : Se lect works because by default, JTPUT -tkt puts a value of -tkt
into the token.

46

Dyalog APL/W Language Reference

Debugging Threads

If a thread sustains an untrapped error, its execution is suspended in the normal way. If
the Pause on Error option (see User Guide) is set, all other threads are paused. If Pause
on Error option (see User Guide) is not set, other threads will continue running and it is
possible for another thread to encounter an error and suspend.

Using the facilities provided by the Tracer and the Threads Tool (see User Guide) it is
possible to interrupt (suspend) and restart individual threads, and to pause and resume
individual threads, so any thread may be in one of three states - running, suspended or
paused.

The Tracer and the Session may be connected with any suspended thread and you can
switch the attention of the Session and the Tracer between suspended threads using
) TID or by clicking on the appropriate tab in the Tracer. At this point, you may:

Examine and modify local variables for the currently suspended thread.
Trace and edit functions in the current thread.

Cut back the stack in the currently suspended thread.

Restart execution.

Start new threads

The error message from a thread other than the base is prefixed with its thread number:

260:DOMAIN ERROR

Div[2] rsltenumsdiv
A

State indicator displays:) SI and) SINL have been extended to show threads’ tree-like
calling structure.

)SI
Calc[1]
&5
. DivSub[1]
&7
DivSub[1]
&6
Div[2]x
&4
Sub[3]
Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div
and Calc. Function D1 v, after spawning Di vSub in each of threads 6 and 7, has been
suspended at line [2].

Chapter 1 Introduction 47

Removing stack frames using Quit from the Tracer or + from the session affects only
the current thread. When the final stack frame in a thread (other than the base thread) is
removed, the thread is expunged.

)RESET removes all but the base thread.
Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or
operator. It may be connected to the Session so that expressions executed in the Session
do so in the context of that thread. It may be restarted by executing > 11 ne (typically,
-[LC).

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to [JDQ, a call on an external
function, at the beginning of a line, or indeed at any of the thread-switching points
described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button . A
paused thread resumes only in the sense that it ceases to be ignored by the thread
scheduler and will therefore be switched back to at some point in the future. It does not
actually continue executing until the switch occurs.

48

Dyalog APL/W Language Reference

External Variables

An external variable is a variable whose contents (value) reside not in the workspace,
but in a file. An external variable is associated with a file by the system function JXT.
If at the time of association the file exists, the external variable assumes its value from
the contents of the file. If the file does not exist, the external variable is defined but a
VALUE ERROR occurs if it is referenced before assignment. Assignment of an array to
the external variable or to an indexed element of the external variable has the effect of
updating the file. The value of the external variable or the value of indexed elements of
the external variable is made available in the workspace when the external variable
occurs in an expression. No special restrictions are placed on the usage of external
variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different nodes
on a network, provided that the appropriate file access controls are established. Multi-
user access to an external variable may be controlled with the system function JFHOLD
between co-operating tasks.

Refer to the sections describing the system functions JXT and (F HOLD in Chapter 6 for
further details.

Examples
"ARRAY' OXT 'V

V<110
V(2] + 5

Oex'v'
"ARRAY"' OXT 'F'

F
12345678910

Chapter 1 Introduction 49

Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of APL
arrays known as components which are accessed by reference to their relative positions
or component number within the file. A set of system functions is provided to perform
a range of file operations. (See Chapter 6.) These provide facilities to create or delete
files, and to read and write components. Facilities are also provided for multi-user
access including the capability to determine who may do what, and file locking for
concurrent updates. (See User Guide.)

Auxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users
with additional facilities. They run as separate tasks, and communicate with the Dyalog
APL interpreter through pipes (UNIX) or via an area of memory (Windows). Typically,
APs are used where speed of execution is critical, such as in screen management
software, or for utility libraries. Auxiliary Processors may be written in any compiled
language, although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it
were a locked defined function, but is in effect an entry point into the Auxiliary
Processor. An external function occupies only a negligible amount of workspace. (See
User Guide.)

Migration Level

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes [JML has a value of 0.

50 Dyalog APL/W Language Reference

Key to Notation

The following definitions and conventions apply throughout this manual:

f

K]
(1]
{X}

A function, or an operator's left argument when a function.
A function, or an operator's right argument when a function.
An operator's left argument when an array.
An operator's right argument when an array.
The left argument of a function.
The right argument of a function.
The explicit result of a function.
Axis specification.
Index specification.

The left argument of a function is optional.

{R}+« The function may or may not return a result, or the result may be suppressed.

The term function may refer to a primitive function, a system function, a defined
(canonical, dynamic or assigned) function or a derived (from an operator) function.

51

CHAPTER 2

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may
produce an array as a result. A defined operator is a program that takes 1 or 2 functions
or arrays (known as operands) and produces a derived function as a result. To
simplify the text, the term operation is used within this chapter to mean function or
operator.

Canonical Representation

Operations may be defined with the system function [JF X (Fix) or by using the editor
within definition mode. Applying [JCR to the character array representing the name of
an already established operation will produce its canonical representation. A defined
operation is composed of lines. The first line (line 0) is called the operation HEADER.
Remaining lines are APL statements, called the BODY.

The operation header consists of the following parts:

1. its model syntactical form,

2. an optional list of local names, each preceded by a semi-colon (;) character,

3. an optional comment, preceded by the symbol A.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

52

Dyalog APL/W Language Reference

Model Syntax

The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of explicit
arguments or operands, either 0, 1 or 2; whence the operation is termed NILADIC,
MONADIC or DYADIC respectively. Only a defined function may be niladic. There
is no relationship between the valence of a defined operator, and the valence of the
derived function which it produces. Defined functions and derived functions produced
by defined operators may be ambivalent, i.e. may be executed monadically with one
argument, or dyadically with two. An ambivalent operation is identified in its model by
enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model within

braces. Such a suppressed result is termed SHY.

Figures 2(i), 2(ii) and 2(iii) show all possible models for defined functions and
operators respectively.

Defined Functions

Result Niladic Monadic Dyadic Ambivalent

None f fy X fy {X} f Y

Explicit R<f Re«f Y ReX f Y Re{X} f Y
Suppressed {R}<f {R}«f Y {R}eX £ Y | {R}{X} f Y

Figure 2(i) : Models for Defined Functions

Note: The right argument Y and/or the result R may be represented by a single name,
or as a blank-delimited list of names surrounded by parentheses. For further
details, see Namelists.

Chapter 2 Defined Functions & Operators 53

Derived Functions produced by Monadic Operator

Result Monadic Dyadic Ambivalent

None (A op)Y X(A op)Y {X}(A op)Y
Explicit R<(A op)Y R«X(A op)Y R<{X}(A op)Y
Suppressed | {R}<(A op)Y | {R}«X(A op)Y | {R}<{X}(A op)Y

Figure 2(ii) : Models for Defined Operators (Monadic)

Derived Functions produced by Dyadic Operator

Result Monadic Dyadic Ambivalent
None (A op B)Y X(A op B)Y {X}(A op B)Y
Explicit R«(A op B)Y R«X(A op B)Y R«{X}(A op B)Y
Suppress {R}«<(A op B)Y | {R}«X(A op B)Y | {R}«{X}(A op B)Y

Figure 2(iii) : Models for Defined Operators (Dyadic)

54

Dyalog APL/W Language Reference

Statements

A statement is a line of characters understood by APL. It may be composed of:

1. aLABEL (which must be followed by a colon :), ora CONTROL STATEMENT
(which is preceded by a colon), or both,

2. an EXPRESSION (see Chapter 1),

3. aSEPARATOR (consisting of the diamond character ¢ which must separate
adjacent expressions),

4. a COMMENT (which must start with the character A).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ¢. Any characters occurring to
the right of the first comment symbol (A) that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by ¢ are taken in
left-to-right order as they occur in the line. For output display purposes, each separated
expression is treated as a separate statement.

Examples
5x10
50
MULT: 5x10
50
MULT: 5x10 ¢ 2xU4
50
8
MULT: 5x10 ¢ 2x4 @ MULTIPLICATION
50

8

Chapter 2 Defined Functions & Operators 55

Global & Local Names

The following names, if present, are local to the defined operation:
1. the result,
2. the argument(s) and operand(s),

3. additional names in the header line following the model, each name preceded by a
semi-colon character,

4. labels,
5. the argument list of the system function JSHADOW when executed,
6. aname assigned within a Dynamic Function.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is
localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic operation.
The name of a label may be the same as a name in the header line. More than one label
may have the same name. When the operation is executed, local names in the header
line after the model are initially undefined; labels are assigned the values of line
numbers on which they occur, taken in order from the last line to the first; the result (if
any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array
to the left of the function when called; and the right argument (if any) takes the value of
the array to the right of the function when called. In the case of a defined operator, the
left operand takes the value of the function or array to the left of the operator when
called; and the right operand (if any) takes the value of the function or array to the right
of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or SHADOWING.
A value or meaning given to a local name will persist only for the duration of execution
of the defined operation (including any time whilst the operation is halted). A name
which is not local to the operation is said to be GLOBAL. A global name could itself
be local to a pendent operation. A global name can be made local to a defined operation
during execution by use of the system function JSHADOW. An object is said to be
VISIBLE if there is a definition associated with its name in the active environment.

56

Dyalog APL/W Language Reference

Examples
A<1
vV F
[1] A<10
[2] Vv
F A <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A
10
A<1
JERASE F
V F;A
[1] A<10
[2] v
F A <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A
1

Any statement line in the body of a defined operation may begin with a LABEL. A
label is followed by a colon (:). A label is a constant whose value is the number of the
line in the operation defined by system function [JF X or on closing definition mode.

The value of a label is available on entering an operation when executed, and it may be
used but not altered in any expression.

Example

OVR'PLUS'
v R<{A} PLUS B
[1] ~DYADIC p=2=[NC'A' ¢ R<«B o =END
[2] DYADIC: R<«A+B
[3] END:
\'

1 OSTOP'PLUS'

2 PLUS 2
PLUS[1]

DYADIC
2

END

Chapter 2 Defined Functions & Operators 57

Namelists

The right argument and the result of a function may be specified in the function header
by a single name or by a Namelist. In this context, a Namelist is a blank-delimited list of
names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no need
to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in a
LENGTH ERROR in the calling statement. Otherwise, the elements of the argument are
assigned to the names in the Namelist in the specified order.

Example:

vV IDN«Date2IDN(Year Month Day)

[1] 'Year is ',sYear
[2] '"Month is ',sMonth
[3] 'Day is ',sDay
(4] ...

\'

Date2IDN 2004 4 30
Year is 2004
Month is 4
Day is 30

Date2IDN 2004 4
LENGTH ERROR
Date2IDN 2004 4

A

Note that if you specify a single name in the Namelist, the function may be called only
with a 1-element vector or a scalar right argument.

If the result of a function is declared as a Namelist, the values of the names will
automatically be stranded together in the specified order and returned as the result of the
function when the function terminates.

58 Dyalog APL/W Language Reference

Example:

vV (Year Month Day)<«Birthday age

[1] Year«1949+age
[2] Month<«u
[3] Day<«30
\4
Birthday 50
1999 4 30

Function Declaration Statements

Certain statements that are used to identify the characteristics of a function in some
way. These statements are not executable statements and may appear anywhere in the
body of the function.

Access Statement :Access

:Access <Private|Public><Instance|Shared>
:Access <WebMethod>

The :Access statement is used to specify characteristics for functions that represent
Methods in classes (see chapter 3). It is also applicable to Classes and Properties.

Element Description

Private|Public Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The default
isPrivate.

Instance|Shared | Specifies whether the method runs in the Class or
Instance. The defaultis Instance.

WebMethod Specifies that the method is exported as a web method.
This applies only to a Class that implements a Web
Service.

Overridable Applies only to an Instance Method and specifies that the
Method may be overridden by a Method in a higher Class.
See below.

Override Applies only to an Instance Method and specifies that the
Method overrides the corresponding Overridable Method
defined in the Base Class. See below

Chapter 2 Defined Functions & Operators 59

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding Base
Class Methods.

WebMethod

Note that : Access WebMethod is equivalent to:

tAccess Public
:Attribute System.Web.Services.WebMethodAttribute

Attribute Statement :Attribute

:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .Net Attributes to a Method (or Class).

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .Net attribute

ConstructorArgs | Optional arguments for the Attribute constructor

Examples

:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

60 Dyalog APL/W Language Reference

Implements Statement :Implements

:Implements Constructor <[:Base expr]>
:Implements Destructor

:Implements Method <InterfaceName.MethodName>
:Implements Trigger <namel><,name2,name3,...

The :Implements statement identifies the function to be one of the following special
types.

Element Description

Constructor | Specifies that the function is a class constructor.

:Base expr Specifies that the Base Constructor be called with the result of
the expression expr as its argument.

Destructor Specifies that the method is a Class Destructor.

Method Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger Identifies the function as a Trigger Function which is activated

by changes to variables name1, name2, etc. (see Triggers).

Signature Statement :Signature

:Signature <rslttype«><name><argltype arginame>,...

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify a

different result type.
Element Description
rslttype Specifies the data type for the result of the
method
name Specifies the name of the exported method.
argntype Specifies the data type of the nth parameter
argnname Specifies the name of the nth parameter

Chapter 2 Defined Functions & Operators 61

Argument and result data types are identified by the names of .Net Types which are
defined in the .Net Assemblies specified by JUSING or by a : USING statement.

Examples

In the following examples, it is assumed that the .Net Search Path (defined by :Using
or JUSING includes 'System'.

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature String[J]«Format Object Array

The next statement specifes that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters.
The first parameter is of type System.Double and is named Dimension. The
second is of type System.Object and is named Argl. The third is of type
System.Object and is named Arg2.

:Signature Object<«Catenate Double Dimension,...
...0Object Argl, Object Arg2

The next statement specifes that the function is exported as a method named
IndexGen whose result is an array of type System. Int32 and which takes 2
parameters. The first parameter is of type System.Int32 and is named N. The
second is of type System.Int32 and is named Origin.

:Signature Int32[J]«IndexGen Int32 N, Int32 Origin

The next block of ststements specifies that the function is exported as a method named
Mix. The method has 4 different signatures; i.e. it may be called with 4 different
parameter/result combinations.

:Signature Int32[,]«Mix Double Dimension,
...Int32[] Vecl, Int32[] Vec2
:Signature Int32[,]«Mix Double Dimension,...
Int32[] Vecl, Int32[] Vec2, Int32 Vec3
:Signature Double[,]«Mix Double Dimension,
Double[] Vecl, Double[] Vec2
:Signature Double[,]«Mix Double Dimension, ...
Double[] Vecl, Double[] Vec2, Double[] Vec3

62

Dyalog APL/W Language Reference

Control Structures

Control structures provide a means to control the flow of execution in your APL
programs.

Traditionally, lines of APL code are executed one by one from top to bottom and the
only way to alter the flow of execution is using the branch arrow. So how do you
handle logical operations of the form [JIf this, do that; otherwise do the otherJ?.

In APL this is often not a problem because many logical operations are easily
performed using the standard array handling facilities that are absent in other languages.
For example, the expression :

STATUS«(1+AGE<16)>'Adult' 'Minor'

sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS to 'Minor'.

Things become trickier if, depending upon some condition, you wish to execute one set
of code instead of another, especially when the code fragments cannot conveniently be
packaged as functions. Nevertheless, careful use of array logic, defined operators, the
execute primitive function and the branch arrow can produce high quality maintainable
and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations and
decisions. Apart from providing greater affinity with more traditional languages,
Control structures may enhance comprehension and reduce programming errors,
especially when the logic is complex. Control structures are not, however, a
replacement for the standard logical array operations that are so much a part of the APL
language.

Control Structures are blocks of code in which the execution of APL statements follows
certain rules and conditions. Control structures are implemented using a set of control
words that all start with the colon symbol (:). Control Words are case-insensitive.

There are eight different types of control structures defined by the control words, : If,
:While, :Repeat, :For, :Select, :With, :Trapand :Hold. Each one of
these control words may occur only at the beginning of an APL statement and indicates
the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These are
tElse,:Elself, :AndIf, :0rIf, :Until, :Caseand :CaselList.

Chapter 2 Defined Functions & Operators 63

A third set of control words is used to identify the end of a particular control structure.
These are : EndIf, :EndWhile, :EndRepeat, :EndFor, :EndSelect,
:EndWith, :EndTrap and :EndHold. Although formally distinct, these control
words may all be abbreviated to : End.

Finally, the :GoTo, :Return, :Leave and : Continue control words may be used
to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as :E1se and :E1seIf, may occur only at
the beginning of a line or expression in a diamond-separated statement. The only
exceptions are : In and : InEach which must appear on the same line withina : For
expression.

Key to Notation

The following notation is used to describe Control Structures within this section:

aexp an expression returning an array,

bexp an expression returning a single Boolean value (0 or 1),

var loop variable used by : For control structure,

code 0 or more lines of APL code, including other (nested) control structures,

andor either one or more : AndIf statements, or one or more :OrIf statements.

— —— o
A

— —— o
A

A

64

Dyalog APL/W Language Reference

If Statement :If bexp

The simplest : If control structure is a single condition of the form:

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] tEndIf

If the test condition (in this case AGE <21) is true, the statements between the : If and
the : EndIf will be executed. If the condition is false, none of these statements will be
run and execution resumes after the : EndIf. Note that the test condition to the right of
: If must return a single element Boolean value 1 (true) or 0 (false).

: If control structures may be considerably more complex. For example, the following
code will execute the statements on lines [2-3] if AGE<21 is 1 (true), or
alternatively, the statement on line [6] if AGE<21 is 0 (false).

[1] :If AGE<21

[2] expr 1
[3] expr 2
[5] :Else

[6] expr 3

[7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. For example,

[1] :If WINEAGE<5

[2] ‘Too young to drink'

[5] :ElselIf WINEAGE<10

[6] ‘Just Right'

[7] :ElselIf WINEAGE<15

[8] ‘A bit past its prime'
[9] :Else

[10] 'Definitely over the hill'

[11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the : E 1se if none of the conditions are true.

Chapter 2 Defined Functions & Operators 65

The : AndIf and :OrIf control words may be used to define a block of conditions
and so refine the logic still further. You may qualify an :If oran :E1seIf with one
or more : AndIf statements or with one or more :Or If statements. You may not
however mix : AndIf and :OrIf in the same conditional block. For example:

[1] :If WINE.NAME='Chateau Lafitte'
[2] :AndIf WINE.YEARe1962 1967 1970
[3] 'The greatest?'

(4] :ElseIf WINE.NAME='Chateau Latour'
[5] :0rif WINE.NAME='Chateau Margaux'
[6] :0Orif WINE.PRICE>100

[7] "Almost as good'
[8] :Else
[9] '"Everyday stuff'

[10] :EndIf

Please note that in a : I f control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to true.
At that point, the APL statements following this condition block are executed. None of
the conditions associated with any other condition block are executed. Furthermore, if
an :AndIf condition yields O (false), it means that the entire block must evaluate to
false so the system moves immediately on to the next block without executing the other
conditions following the failing : AndIf. Likewise, ifan :OrIf condition yields 1
(true), the entire block is at that point deemed to yield true and none of the following
:0rIf conditions in the same block are executed

66 Dyalog APL/W Language Reference

:If Statement
I
:If bexp
I
I I
| andor
I I
| <------ !
I
code
I
[€==-mmmmm e -
I
I I
| :Else :Elself bexp
I I I
| | mmmmmme :
I I I I
| | | andor
I I I I
| | | <=----- !
I I I
| code code
| | I
| 1
I

Chapter 2 Defined Functions & Operators 67

While Statement :While bexp

The simplest :Whi le loop is:

[1] I<0

[2] :While I<100
[3] expri
(4] expr2
[5] I«I+1

[6] :EndWhile

Unless expr1 or expr2 alter the value of I, the above code will execute lines [3-4]
100 times. This loop has a single condition; the value of I. The purpose of the
:EndWhi 1e statement is solely to mark the end of the iteration. It acts the same as if it
were a branch statement, branching back to the :Whi 1e line.

An alternative way to terminate a :Whi 1e structure isto use a :Unt i1 statement.
This allows you to add a second condition. The following example reads a native file
sequentially as 80-byte records until it finds one starting with the string 'Widget ' or
reaches the end of the file.

[1] I<0

[2] :While I<ONSIZE ~1

[3] REC<[INREAD ~1 82 80
[4] I«<I+pREC

[5] :Until 'Widget '=6pREC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using : AndIf and :0OrIf. For example:

[1] :While 100>i
[2] :AndIf 100>j
[3] i j«foo i j
(4] :Until 100<i+j
[5] :0rIf i<0

[6] :0rIf j<O

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than or
equal to 100. If either test fails, the iteration stops. Then, after i and j have been
recalculated by f oo, the iteration stops if i+ j is equal to or greater than 100, or if
either i or j is negative.

68 Dyalog APL/W Language Reference

:While Statement

I
:While bexp

I
:End[While] :Until bexp

Chapter 2 Defined Functions & Operators 69

Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines [3-5]
100 times. Notice that as there is no conditional test at the beginning of a :Repeat
structure, its code statements are executed at least once.

[1] I<0

[2] :Repeat
[3] expri
[4] expr2
[5] I«I+1

[6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding : AndIf or
:0rIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'Widget ' or
reaches the end of the file.

[1] :Repeat

[2] REC<[JNREAD ~1 82 80
[3] :Until 'Widget'=6pREC
[4] :0OrIf O=pREC

A :Repeat structure may be terminated by an : EndRepeat (or : End) statement in
place of a conditional expression. If so, your code must explicitly jump out of the loop
using a : Leave statement or by branching. For example:

[1] :Repeat

[2] REC<[INREAD ~1 82 80
[3] :If 0=pREC

(4] :0rIf 'Widget'=6pREC
[5] :Leave

[6] :tEndIf

[7] :EndRepeat

70 Dyalog APL/W Language Reference

:Repeat Statement

I
:Repeat

:End[Repeat]

Until b

exp

Chapter 2 Defined Functions & Operators 71

For Statement :For var :In[Each] aexp

Single Control Variable

The : For loop is used to execute a block of code for a series of values of a particular
control variable. For example, the following would execute lines [2-3] successively
for values of I from[JIO to 10

[1] :For I :In 110
[2] exprl I
[3] expr2 I
[4] :EndFor

The way a : For loop operates is as follows. On encountering the : For, the
expression to the right of : In is evaluated and the result stored. This is the control
array. The control variable, named to the right of the : For, is then assigned the first
value in the control array, and the code between : For and : EndFor is executed. On
encountering the : EndF or, the control variable is assigned the next value of the
control array and execution of the code is performed again, starting at the first line after
the : For. This process is repeated for each value in the control array.

Note that if the control array is empty, the code in the : For structure is not executed.
Note too that the control array may be any rank and shape, but that its elements are
assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code
resizes (and compacts) all your component files

[1] :For FILE :In (0FLIB '')~"" "'

[2] FILE OFTIE 1
[3] OFRESIZE 1
[4] OFUNTIE 1

[5] :EndFor

You may also nest : For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS<0

[2] :For FILE :In (¢0FLIB "')~""' '

[3] FILE OFTIE 1

(4] START END<«2p[JFSIZE 1

[5] :For COMP :In (START-1){i1END-1
[6] TS[«"11[0FREAD FILE COMP
[7] :EndFor

[8] [JFUNTIE 1

[9] :EndFor

72

Dyalog APL/W Language Reference

Multiple Control Variables

The : For control structure can also take multiple variables. This has the effect of doing
a strand assignment each time around the loop.

For example :For a b ¢ :in (1 2 3)(4% 5 6),setsa b c«1 2 3, first
time around the loopand a b c«4 5 6, the second time.

Another example is :For i j :In i1pMatrix, whichsets i and j to each row
and column index of Matri x.

:InEach Control Word

:For var ... :InEach value
Ina : For control structure, the keyword : InEach is an alternative to : In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)
O«a b c
:EndfFor

:For a b c :InEach (1 35 7)(2 4 6 8)(3 5 7 9)
O«a b c
:EndfFor

In each case, the output from the loop is:

~Nowe
oo F N
ONTWw

Notice that in the second case, the number of items in the values vector is the same as
the number of control variables. A more typical example might be.

:For a b ¢ :InEach avec bvec cvec
:Endﬁé;

Here, each time around the loop, control variable a is set to the next item of avec, b to
the next item of bvec and c to the next item of cvec.

Chapter 2 Defined Functions & Operators 73

:For Statement

:For var :In[Each] aexp

code

|
:End[For]
|

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon the
value of an array. For example, the following displays 'I is 1' ifthe variable I has
thevalue 1, 'I is 2'ifitis2,or 'I is neither 1 nor 2' ifithas some
other value.

[1] :Select I
[2] :Case 1

[3] 'T is 1

[4] :Case 2

[5] 'T is 2'

[6] :Else

[7] 'I is neither 1 nor 2'

[8] :EndSelect

In this case, the system compares the value of the array expression to the right of the
:Select statement with each of the expressions to the right of the : Case statements
and executes the block of code following the one that matches. If none match, it
executes the code following the : E 1se (which is optional). Note that comparisons are
performed using the = primitive function, so the arrays must match exactly. Note also
that not all of the : Case expressions are necessarily evaluated because the process
stops as soon as a matching expression is found.

Instead of a : Case statement, you may also use a : Casel ist statement. Ifso, the
enclose of the array expression to the right of : Select is tested for membership of the
array expression to the right of the : Casel i st using the € primitive function.

74 Dyalog APL/W Language Reference

Example

[1] :Select 2?26 6
[2] :Case 6 6

[3] 'Box Cars'

[4] :Case 1 1

[5] ‘Snake Eyes'
[6] :Caselist 2p~16

[7] 'Pair'

[8] :CaselList (16), ¢16
[9] ‘Seven'

[10] :Else

[11] "Unlucky’

[12] :EndSelect

:Select Statement

:Select aexp

¢ —_——
A

:End[Select]

Chapter 2 Defined Functions & Operators 75

With Statement :With obj

:With is a control structure that may be used to simplify a series of references to an
object or namespace. : Wi th changes into the specified namespace for the duration of
the control structure, and is terminated by : End[With]. For example, you could
update several properties of a Grid object F . G as follows:

:With F.G
Values<«4 3p0
RowTitles«'North' 'South' 'East' 'West'
ColTitles«'Cakes' 'Buns' 'Biscuits'
:EndWith

:With is analogous to [ICS in the following senses:

e The namespace argument to : Wi th is interpreted relative to the current space.

e Local names in the containing defined function continue to be visible in the new
space.

e Global references from within the : Wi th control structure are to names in the new
space.

o Exiting the defined function from within a : Wi th control structure causes the space
to revert to the one from which the function was called.

On leaving the : Wi th control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (=) out of the control
structure. : Wi th control structures can be nested in the normal fashion:

[1] :With 'x' A Change to #.x
[2] :With 'y A Change to #.x.y
[3] :With OSE @A Change to [SE
[4] . A ... in [SE

[5] :EndWith A Back to #.x.y
[6] :EndWith A Back to #.x

[7] :EndWith A Back to #

:With Statement
|

:With namespace (ref or name)

code

|
tEnd[With]
I

76

Dyalog APL/W Language Reference

Hold Statement tHold tkns

Whenever more than one thread tries to access the same piece of data or shared resource
at the same time, you need some type of synchronisation to control access to that data.
This is provided by : Ho1d.

:Ho1d provides a mechanism to control thread entry into a critical section of code.

t kns must be a simple character vector or scalar, or a vector of character vectors.
tkns represents a set of ‘tokens’, all of which must be acquired before the thread can
continue into the control structure. : Ho1d is analogous to the component file system
OF HOLD.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution
continues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of the
tokens is already in use:

1. Ifthereis no :E1se clause in the control structure, execution of the thread is
blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the : E 1se clause.

tkns can be either a single token:

a
'Red'
"#.Uti1!

'Program Files'
... or a number of tokens:

‘red' 'green' 'blue’
'doe' 'a' 'deer'

, 'abc'

On1 9

Pre-processing removes trailing blanks from each token before comparison, so that, for
example, the following two statements are equivalent:

:Hold 'Red' 'Green'

tHold V2 5p'Red Green'

Chapter 2 Defined Functions & Operators 77

Unlike OF HOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when multiple
threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace, and
then updates a structure in its parent space. The holds will allow all ‘sibling’
namespaces to update concurrently, but will constrain updates to the parent structure to
be executed one at a time.

:Hold [cs'' A Hold child space
. A Update child space
:Hold ##.0cs'"' A Hold parent space

cen A Update Parent space
:EndHold
:EndHo1d

However, with the nesting of holds comes the possibility of a ‘deadlock’. For example,
consider the two threads:

Thread 1 Thread 2

:Hold 'red’ tHold 'green'
‘Hold ‘green’ ‘Hold 'red’
:EndHod :EndHold

:EndHo1d :EndHold

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token. Fortunately, the interpreter detects such cases
and issues an error (1008) DEADLOCK. You can avoid deadlock by ensuring that
threads always attempt to acquire tokens in the same chronological order, and that
threads never attempt to acquire tokens that they already own.

Note that token acquisition for any particular : Ho1d is atomic, that is, either al/l of the
tokens or none of them are acquired. The following example cannot deadlock:

Thread 1 Thread 2

tHold 'red'

e tHold 'green' 'red'

:Hold 'green' cee

cen :EndHold
:EndHo1d

:EndHo1d

78 Dyalog APL/W Language Reference

Examples

:Ho1d could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token would
be the name of the data structure variable itself, although this is just a programming
convention: the interpreter does not associate the token value with the data variable.

:Hold'Struct'

cee A Update Struct
Struct « ...

:EndHo1d

The next example guarantees exclusive use of the current namespace:

:Hold [cCs"'' A Hold current space
:EndHold

The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold 3 'to fm
:If >/vec[fm to]
vec[fm to]«vec[to fm]
:End
:End

Between obtaining the next available file tie number and using it:

:Hold '[JFNUMS'
tie«1+[/0,FNUMS
fname [FSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:
fname OFSTIE tie<«1+[/0,0FNUMS

or,
tie«fname OFSTIE O

Chapter 2 Defined Functions & Operators 79

Note that : Ho 1d, like its component file system counterpart JFHOLD, is a device to
enable co-operating threads to synchronise their operation.

:Ho 1d does not prevent threads from updating the same data structures concurrently, it
prevents threads only from : Ho 1d-ing the same tokens.

:Hold Statement

I
:Hold token(s)

. le) . .
o
Q.
(]

:End[Ho1d]
|

80

Dyalog APL/W Language Reference

Trap Statement :Trap ecode

: Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the JTRAP system variable. It is equivalent to APL2’s [JEA, except that
the code to be executed is not restricted to a single expression and is not contained
within quotes (and so is slightly more efficient).

Operation

The segment of code immediately following the : Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
tEnd[Trapl.

If an error does occur, the event code (error number) is noted and:

e [fthe error occurred within a sub-function, the system cuts the execution stack back
to the function containing the : Trap keyword. In this respect, : Trap behaves like
OTRAP witha 'C' qualifier.

e The system searches fora : Case[L1ist] representing the event code.

e Ifthereissucha :Case[List], or failing that, an : E 1 se keyword, execution
continues from this point.

Otherwise, control passes to the code following : End[Trap] and no error processing
occurs.

Note that the error trapping is in effect only during execution of the initial code
segment. It is disabled (or surrendered to outer level : Traps or JTRAPs) immediately
a trapped error occurs. In particular, the error trap is no longer in effect during
processing of :Case[L1ist]’s argument or in the code following the : Case[List]
or : E1se statement. This avoids the situation sometimes encountered with JTRAP
where an infinite ‘trap loop’ occurs, If an error which is not specified occurs, it is
processed by outer : Traps, TRAPs, or default system processing in the normal
fashion.

Chapter 2 Defined Functions & Operators 81

Examples
vV Ix
[1] :Trap 1000 A Cutback and exit on interrupt
[2] Main
[3] :EndTrap
\'4
V ftie<Fcreate file A Create null component file
[1] ftiec1+[/0,0fnums A next tie number.
[2] :Trap 22 A Trap FILE NAME ERROR
[3] file Ofcreate ftie A Try to create file.
[4] :Else
[5] file Oftie ftie A Tie the file.
[6] file [ferase ftie a Drop the file.
[7] file Ofcreate ftie A Create new file.
[8] :EndTrap
\'4
V 1x A Distinguish various cases
[1] :Trap 0 1000
[2] Main ...
[3] :Case 1002
(4] ‘"Interrupted ...'
[5] :Caselist 1 10 72 76
[6] ‘Not enough resources'
[7] :CaselList 17+120
[8] 'File System Problem'
[9] :Else
[10] ‘Unexpected Error'
[11] :EndTrap
\'4
Note that : Traps can be nested:
V ntieeNtie file A Tie native file
[1] ntie«< 1+ /0,0nnums A Next native tie num
[2] :Trap 22 A Trap FILE NAME ERROR
[3] file Ontie ntie A Try to tie file
[4] :Else
[5] :Trap 22 A Trap FILE NAME ERROR
[6] (file,'.txt')dntie ntie A Try with .txt extn
[7] :Else
[8] file Oncreate ntie A Create null file.
[9] :EndTrap

[10] :EndTrap

82 Dyalog APL/W Language Reference

:Trap Statement

:Trap <ecode>

code

I

[¢--m=-mmrr .
I |
o o |
I I |
| :Else :Case[List] <ecode> |
I I I |
I I I |
I I I |
| code code |
I I I |
| Cmmm e ' N e e e e '
I

iEnd[Trap]

Where ecode is a scalar or vector of JTRAP event codes (see Chapter 6).

Note that within the : Trap control structure, : Case is used for a single event code
and : Caselist for a vector of event codes.

Chapter 2 Defined Functions & Operators 83

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to -+ (branch) and causes execution to jump to
the line specified by the first element of aexp.

The following are equivalent. See Branch for further details.

»Exit
:GoTo Exit

>(N<I«I+1)/End
:GoTo (N<I<«I+1)/End

-1 +[JLC
:GoTo 1+[LC

-10
:GoTo 10

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same effect
as ~0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

Leave Statement :Leave

A :Leave statement is used to explicitly terminate the execution of a block of statements
withina :For, :Repeat or :Whi 1e control structure.

The :Leave control word takes no argument.

84 Dyalog APL/W Language Reference

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :Whi le control loop.

When executed within a : For loop, the effect is to start the body of the loop with the
next value of the iteration variable.

When executed within a :Repeat or :Whi e loop, if there is a trailing test that test is
executed and, if the result is true, the loop is terminated. Otherwise the leading test is
executed in the normal fashion.

Chapter 2 Defined Functions & Operators 85

Triggers

Triggers provide the ability to have a function called automatically whenever a variable
or a Field is assigned. Triggers are actioned by all forms of assignment («), but only by
assignment.

Triggers are designed to allow a class to perform some action when a field is modified —
without having to turn the field into a property and use the property setter function to
achieve this. Avoiding the use of a property allows the full use of the APL language to
manipulate data in a field, without having to copy field data in and out of the class
through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger from
a variable is a little tricky at present.
The function that is called when a variable or Field changes is referred to as the Trigger
Function. The name of a variable or Field which has an associated Trigger Function is
termed a Trigger.
A function is declared as aTrigger function by including the statement:

:Implements Trigger Namel,Name2,Name3,

where Name 1, Name?2 etc are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name Name of the Trigger whose change in value has caused
the Trigger Function to be invoked.

NewValue The newly assigned value of the Trigger

OldValue The previous value of the Trigger. If the Trigger was

not previously defined, a reference to this Field causes
a VALUE ERROR.

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The precise
timing is not guaranteed and may not be consistent because internal workspace
management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

86

Dyalog APL/W Language Reference

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be re-
established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this will
potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a /ocal name, it is necessary to dynamically fix the
Trigger function in the function in which the Trigger is localised; for example:

v TRIG arg
[1] :Implements Trigger A
[2] ce
vV TEST;A
[1] OFX OOR'TRIG'
[2] A<10
[3]
Example

The following function displays information when the value of variables A or B
changes.

v TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 A VALUE ERROR
[4] arg.Name'was ‘arg.01dValue
[5] tElse
[6] arg.Name' was [undefined]'
[7] :EndTrap
v

Note that on the very first assignment to A, when the variable was previously undefined,
arg.01dValueisa VALUE ERROR.

Chapter 2 Defined Functions & Operators 87

A«<10
A is now 10
A was [undefined]
A+<10
A is now 20
A was 10
A<'Hello World'
A is now Hello World
A was 20

A[1]«c2 3p16
A is now 1 2 3 ello World

4L 56
A was Hello World
B<dp™A
B 1is now 321 ello World
6 5 4
B was [undefined]

A<[ONEW MyClass

A is now #.[Instance of MyClass]
A was 1 2 3 ello World
4 5 6
'"F'OWC'Form'
A<F
A is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a Form
using (OWC does not invoke TRIG.

"A'OWC'FORM' A Note that Trigger Function is not
invoked

However, the connection (between A and TRIG) remains and the Trigger Function will
be invoked if and when the Trigger is re-assigned.

A<99
A is now 99
A was #.A

See Trigger Fields for information on how a Field (in a Class) may be used as a Trigger.

88

Dyalog APL/W Language Reference

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV/1pA (where BV is a Boolean vector and A is an array)
would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

1. Evaluate pA and store result in temporary variable temp1 (temp1 is just an
arbitrary name for the purposes of this explanation)

2. Evaluate 1temp1 and store result in temporary variable temp2.

3. Evaluate BV/temp2

4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and
processed in a single step as if it were a single primitive function. In this case, the

resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the Idiom List table will not be recognised.

For example, [JAV 1 will be recognised as an idiom, but (JAV) 1 will not. Similarly,
(',)/ would not be recognized as the Join idiom.

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

Type Description Rank Description

C Character S Scalar or 1-item vector
B Boolean v Vector

N Numeric M Matrix

P Nested (pointer) A Array (any rank)

A Any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Chapter 2 Defined Functions & Operators

89

Expression
pPA
BV/1NS
BV/1pA
NA>"cA
A{}A
A{a}A
A{w}A
A{o wl}A
{0}A
{0}"A
,/PV
>hA

1A
20, A
t1¢,A
0=pV
0=ppA
0==A
OAV1CA

M{({a)14w}M

1Q1PV

1§>PV

A" '=CA

+/AM\"' '=CA

+/7\BA

{(v\' '#w)/w}CV
{(+/2\" "=w)lw}cCV

Description

Rank

Sequence selection

Index selection

Array selection

Sink

Left (Lev)

Right (Dex)

Link

Zero

Zero Each

Join

Upper right item (Om1<2)
Upper right item (Om12>2)
Lower right item (Om1<2)
Lower right item (Om122)
Zero shape

Zero rank

Zero depth

Atomic vector index (Classic Edition only; use

gucs)

Matrix lota

Nested vector transpose (Om1<2)
Nested vector transpose (Om122)
Mask of leading blanks.

Number of leading blanks
Number of leading ones

Trim leading blanks

Trim leading blanks

90

Dyalog APL/W Language Reference

~o' 'TJCA No-blank split
{(+/v\'" '"#éw)t " 4w}CA No-trailing-blank split
s0p”A Length of first axis of each sub-array (Om1<2)
top”A Length of first axis of each sub-array (Om122)
V,<A Catenate To

Notes

Sequence Selection /1 and Index Selection /1 p, as well as providing an execution
time advantage, reduce intermediate workspace usage and consequently, the incidence
of memory compactions and the likelihood of a WS FULL.

Array Selection NV>""cA, is implemented as A[NV], which is significantly faster. The
two are equivalent but the former may now be used as a matter of taste with no
performance penalty.

Join , / is currently special-cased only for vectors of vectors or scalars. Otherwise, the
expression is evaluated as a series of concatenations. Recognition of this idiom turns
join from an n-squared algorithm into a linear one. In other words, the improvement
factor is proportional to the size of the argument vector.

Upper and Lower Right Item now take constant time. Without idiom recognition, the
time taken depends linearly on the number of items in the argument.

Zero Depth 0== takes a small constant time. Without idiom recognition, time taken
would depend on the size and depth of the argument, which in the case of a deeply
nested array, could be significant.

Nested vector transpose +&1 is special-cased only for a vector of nested vectors, each
of whose items is of the same length.

Matrix Iota { (o) 1Yw}. As well as being quicker, the Matrix Iota idiom can
accommodate much larger matrices. It is particularly effective when bound with a left
argument using the compose operator:

findemate{ (Vo) 1w} A find rows in mat table.
In this case, the internal hash table for mat is retained so that it does not need to be

generated each time the monadic derived function f ind is applied to a matrix
argument.

Chapter 2 Defined Functions & Operators 91

Trim leading blanks { (v\"' '#w)/w} and {(+/A\"' '=w)lw} are two codings of
the same idiom. Both use the same C code for evaluation.

No-blank split ~e¢ ' ' ""{ typically takes a character matrix argument and returns a
vector of character vectors from which, all blanks have been removed. An example
might be the character matrix of names returned by the system function [JNL. In general,
this idiom accommodates character arrays of any rank.

No-trailing-blank split { (+/v\"' '#dw)1t tw} typically takes a character matrix
argument and returns a vector of character vectors. Any embedded blanks in each row
are preserved but trailing blanks are removed. In general, this idiom accommodates
character arrays of any rank.

Lengths 20p”A (Om1<2)or tep”A (Om1>2) avoids having to create an
intermediate nested array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of each
vector.

sop” 'Hi' 'Pete' A Vector Lengths
2 L

For an array of matrices, it returns a simple array of the number of rows in each matrix.

20p [CR4ONL 3 A Lines in functions
5 21...

Catenate To V, <A optimises the catenation of a scalar or a vector to a vector. This
idiom optimises repeated catenation of a scalar or vector to an existing vector.

props,«c 'Posn' 0 0
props,«c'Size' 50 50
vector,«2+4

Note that the idiom is not applied if the value of vector V is shared with another symbol
in the workspace, as illustated in the following examples:

In this first example, the idiom is used to perform the catenation to V1.

Vi<110
Vi,«11

In the second example, the idiom is not used to perform the catenation to V1, because
its value is at that point shared with V2.

Vi<110
V2<V1
Vi,«11

92

Dyalog APL/W Language Reference

In the third example, the idiom is not used to perform the catenation to V in Join[1]
because its value is at that point shared with the array used to call the function.

V V<V Join A
[1] V,<A
\'4
(110) Join 11
1234567 89 10 11

Search Functions and Hash Tables

Primitive dyadic search functions, such as 1 (index of) and € (membership) have a
principal argument in which items of the other subject argument are located.

In the case of 1, the principal argument is the one on the left and in the case of €, it is
the one on the right. The following table shows the principal (P) and subject (s)
arguments for each of the functions.

P 1 s Index of

s € P Membership
s nP Intersection
s uP Union

s ~ P Without

P {(Va)tdw} s Matrix lota (idiom)

The Dyalog APL implementation of these functions already uses a technique known as
hashing to improve performance over a simple linear search. (Note that € (find) does
not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is rewarded
by a considerably quicker search for each item in the subject. Unfortunately, the hash
table is discarded each time the function completes and must be reconstructed for a
subsequent call (even if its principal argument is identical to that in the previous one).

For optimal performance of repeated search operations, the hash table may be retained
between calls, by binding the function with its principal argument using the primitive °
(compose) operator. The retained hash table is then used directly whenever this monadic
derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent application
of the derived function. This usually occurs in one of two ways: either the derived
function is named for later (and repeated) use, as in the first example below or it is
applied repeatedly as the operand of a primitive or defined operator, as in the second
example.

Chapter 2 Defined Functions & Operators 93

Example: naming a derived function.

words«<'red' 'ylo' ‘grn' 'brn' 'blu' 'pnk' 'blk'’

find<wordsec1t A monadic find function
find'blk' 'blu' 'grn' 'ylo' n

7532
find'grn' 'brn' 'ylo' 'red' a fast find

3421

Example: repeated application by (") each operator.

€eoJA"'This' 'And' 'That'
1000 100 1000O0

Locked Functions & Operators

A defined operation may be locked by the system function [JLOCK. A locked operation
may not be displayed or edited. The system function [JCR returns an empty matrix of
shape 0 0 and the system functions [JNR and [JVR return an empty vector for a locked
operation.

Stop and trace vectors may be set by the system functions [JSTOP and JTRACE
respectively. Existing stop or trace settings are cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pendent
when execution is suspended. The state indicator is cut back as described below.

94

Dyalog APL/W Language Reference

The State Indicator

The state of execution is dynamically recorded in the STATE INDICATOR. The state
indicator identifies the chain of execution for operators, functions and the evaluated or
character input/output system variables ([and [J). At the top of the state indicator is the
most recently activated operation.

Execution may be suspended by an interrupt, induced by the user, the system, or by a
signal induced by the system function JSIGNAL or by a stop control set by the system
function JSTOP. If the interrupt (or event which caused the interrupt) is not defined as
a trappable event by the system variable JTRAP, the state indicator is cut back to the
first of either a defined operation or the evaluated input prompt ([J) such that there is no
locked defined operation in the state indicator. The topmost operation left in the state
indicator is said to be SUSPENDED. Other operations in the chain of execution are
said to be PENDENT.

The state indicator may be examined when execution is suspended by the system
commands) SI and) SINL. The line numbers of defined operations in the state
indicator are given also by the system variable [JLC.

Suspended execution may be resumed by use of the Branch function (see Chapter 4).
Whilst execution is suspended, it is permitted to enter any APL expression for
evaluation, thereby adding to the existing state indicator. Therefore, there may be more
than one LEVEL OF SUSPENSION in the state indicator. If the state indicator is cut
back when execution is suspended, it is cut back no further than the prior level of
suspension (if any).

Examples
vV F
[1] G
v
vV G
[1] '"FUNCTION G'+
v
Q] F]

SYNTAX ERROR
G[1] 'FUNCTION G'+
A

Chapter 2 Defined Functions & Operators 95

gLocKk'G!

'y ' F !
SYNTAX ERROR
F[1] G

A

)SI
FL1]x

[}
G[1]x
FL1]
¢

A suspended or pendent operation may be edited by the system editor or redefined using
0F X provided that it is visible and unlocked. However, pendent operations retain their
original definition until they complete, or are cleared from the State Indicator. When a
new definition is applied, the state indicator is repaired if necessary to reflect changes to
the operations, model syntax, local names, or labels.

96

Dyalog APL/W Language Reference

Dynamic Functions & Operators

A Dynamic Function (operator) is an alternative function definition style suitable for
defining small to medium sized functions. It bridges the gap between operator
expressions: rank<pep and full ‘header style’ definitions such as:

V rslt«larg func rarg;local...

In its simplest form, a dynamic function is an APL expression enclosed in curly braces
{} possibly including the special characters o and w to represent the left and right
arguments of the function respectively. For example:

{(+/w)+pw} 1 2 3 4 A Arithmetic Mean (Average)
2.5

3 {wxsa} 64 A ath root
4

Dynamic functions can be named in the normal fashion:

mean<{(+/w)+pw}
mean” (2 3)(4 5)
2.5 4.5

Dynamic Functions can be defined and used in any context where an APL function may
be found, in particular:

In immediate execution mode as in the examples above.
Within a defined function or operator.

As the operand of an operator such as each (7).

Within another dynamic function.

The last point means that it is easy to define nested local functions.

Chapter 2 Defined Functions & Operators 97

Multi-Line Dynamic Functions

The single expression which provides the result of the Dynamic Function may be
preceded by any number of assignment statements. Each such statement introduces a
name which is local to the function.

For example in the following, the expressions sum< and num+< create local variables
sum and num.

mean<{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
sum+num A Mean

}

Note that Dynamic Functions may be commented in the usual way using A.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
Oshadow name 9.

It is important to note the distinction between the two types of statement above. There
can be many assignment statements, each introducing a new local variable, but only a
single expression where the result is not assigned. As soon as the interpreter encounters
such an expression, it is evaluated and the result returned immediately as the result of
the function.

For example, in the following,

mean<{ A Arithmetic mean
sum<«+/w A Sum of elements
num<«pw A Number of elements
sum, num A Attempt to show sum,num (wrong)!
sum+num A ... and return result.
}

... as soon as the interpreter encounters the expression sum, num, the function
terminates with the two element result (sum, num) and the following line is not
evaluated.

98 Dyalog APL/W Language Reference

To display arrays to the session from within a Dynamic function, you can use the
explicit display forms [J« or [J« as in:

mean<«{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
d<sum,num A show sum,num.

sum+num A ... and return result.

}

Note that local definitions can be used to specify local nested Dynamic Functions:

rms<{ A Root Mean Square
root«{wx0.5} A V Square root
mean<{(+/w)+pw} A V Mean
square«{wxw} A V Square

root mean square w

Default Left Argument

The special syntax: o«expr is used to give a default value to the left argument if a
Dynamic Function is called monadically. For example:

root«{ A oth root
o+«2 A default to sqrt
w*+0

}

The expression to the right of o<« is evaluated only if its Dynamic Function is called
with no left argument.

Chapter 2 Defined Functions & Operators 99

Guards

A Guard is a Boolean-single valued expression followed on the right by a
example:

. For

0

w: A Right arg simple scalar

o

o< A Left arg negative

The guard is followed by a single APL expression: the result of the function.
w20: wx0.5 A Square root if non-negative.

A Dynamic function may contain any number of guarded expressions each on a separate
line (or collected on the same line separated by diamonds). Guards are evaluated in turn
until one of them yields a 1. The corresponding expression to the right of the guard is
then evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default result
of the function. For example:

sign<{
w>0: '+ve' A Positive
w=0: 'zero' A zero
'-ve' A Negative (Default)
}

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates the
function) could never be executed and would therefore be redundant.

Shy Result

Dynamic Functions are usually 'pure' functions that take arguments and return explicit
results. Occasionally, however, the main purpose of the function might be a side-effect
such as the display of information in the session, or the updating of a file, and the value
of a result, a secondary consideration. In such circumstances, you might want to make
the result 'shy’, so that it is discarded unless the calling context requires it. This can be
achieved by assigning a dummy variable after a (true) guard:

Append w to file a.

tie number for file,

new component number,
untie file,

comp number as shy result.

log«{
tie«a [Ofstie O
cno«w [Jfappend tie
tie<[Jfuntie tie
1:rslt<«cno

DDO®DODDODD

100 Dyalog APL/W Language Reference

Static Name Scope

When an inner (nested) Dynamic Function refers to a name, the interpreter searches for
it by looking outwards through enclosing Dynamic Functions, rather than searching
back along the execution stack. This regime, which is more appropriate for nested
functions, is said to employ static scope instead of APL’s usual dynamic scope. This
distinction becomes apparent only if a call is made to a function defined at an outer
level. For the more usual inward calls, the two systems are indistinguishable.

For example, in the following function, variable type is defined both within which
itself and within the inner function fn1. When fn1 calls outward to fn2 and fn2
refers to type, it finds the outer one (with value 'static ') rather than the one
defined in fn1i:

which«{

type«'static'

fni<{
type<'dynamic'
fn2 w

}

fn2«{
type w

}

fnl w

which'scope'
static scope

Chapter 2 Defined Functions & Operators 101

Tail Calls

A novel feature of the implementation of Dynamic Functions is the way in which tail
calls are optimised.

When a Dynamic Function calls a sub-function, the result of the call may or may not be
modified by the calling function before being returned. A call where the result is passed
back immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact is the result of the whole expression, whereas the second call isn’t
because the result is subsequently multiplied by w.

(oxw)fact w-1 A Tail call on fact.
wxfact w-1 A Embedded call on fact.

Tail calls occur frequently in Dynamic Functions, and the interpreter optimises them by
re-using the current stack frame instead of creating a new one. This gives a significant
saving in both time and workspace usage. It is easy to check whether a call is a tail call
by tracing it. An embedded call will pop up a new trace window for the called function,
whereas a tail call will re-use the current one.

102 Dyalog APL/W Language Reference

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch with
arguments. The tail call, in effect, branches to the first line of the function after
installing new values for w and a.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps, possibly in a different order
depending on whether we want to test at the ‘top’ or the ‘bottom’ of the loop.

1. Initialise loop control variable(s). A init
2. Test loop control variable. A test
3. Process body of loop. A proc
4. Modify loop control variable for next iteration. A mod
5. Branch to step 2. A jump
For example, in classical APL you might find the following:
vV value«limit Toop value A init
[1] top:~»(0OCT>value-1imit)/0 A test
[2] value«Next value A proc, mod
[3] ~top A jump
v
Control structures help us to package these steps:
V value«limit loop value A init
[1] :While [OCT<value-1imit A test
[2] value«<Next value A proc, mod
[3] :EndWhile A jump
v
Using tail calls:
loop+{ A init
OCT>oa-w:w A test
o V Next w A proc, mod, jump

Chapter 2 Defined Functions & Operators 103

Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers, followed
by the digraph: : :, followed by an expression, the body of the guard, to be evaluated as
the result of the function. For example:

11 5 :: wx0 A Trap DOMAIN and LENGTH errors.

In common with : Trap and JTRAP, error numbers 0 and 1000 are catchalls for
synchronous errors and interrupts respectively.

When an error is generated, the system searches statically upwards and outwards for an
error-guard that matches the error. If one is found, the execution environment is
unwound to its state immediately prior to the error-guard’s execution and the body of
the error-guard is evaluated as the result of the function. This means that, during
evaluation of the body, the guard is no longer in effect and so the danger of a hang
caused by an infinite ‘trap loop’, is avoided.

Notice that you can provide ‘cascading’ error trapping in the following way:

O::try_2nd
O::try_1st
expr

In this case, if ex pr generates an error, its immediately preceding: 0: : catches it and
evaluates try_1st leaving the remaining error-guard in scope. If try_1st fails, the
environment is unwound once again and try_2nd is evaluated, this time with no
error-guards in scope.

Examples:

Open returns a handle for a component file. If the exclusive tie fails, it attempts a share-
tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is
returned.

open<{
0::0
22::w [OFCREATE O
24 25::w [OFSTIE O
w OFTIE O

Handle for component file w.
Fails:: return 0 handle.
FILE NAME:: create new one.
FILE TIED:: try share tie.
Attempt to open file.

DDO®XDO®DD

104 Dyalog APL/W Language Reference

An error in di v causes it to be called recursively with improved arguments.

div<{ A Tolerant division:: a+0 - a.
o<1 A default numerator.
5::1v/{to w A LENGTH:: stretch to fit.
11::0 V w+w=0 A DOMAIN:: increase divisor.

) a+w A attempt division.

Notice that some arguments may cause di v to recur twice:

6 4+ 2 div 3 2
> 6 4 2 div3 20
> 6 4 2 div 3 21
> 2 22

The final example shows the unwinding of the local environment before the error-
guard’s body is evaluated. Local name trap is set to describe the domain of its
following error-guard. When an error occurs, the environment is unwound to expose
trap’s statically correct value.

add<«{
trap«'domain' ¢ 11::trap
trap«<'length' ¢ 5::trap

o+w
}
2 add 3 A Addition succeeds
5
2 add 'three' A DOMAIN ERROR generated.
domain

2 3 add 4+ 5 6 A LENGTH ERROR generated.
lTength

Chapter 2 Defined Functions & Operators 105

Dynamic Operators

The operator equivalent of a dynamic function is distinguished by the presence of
either of the compound symbols ‘ao’ or ‘ww’ anywhere in its definition. a.o. and ww
represent the left and right operand of the operator respectively.

Example

The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each () operator if the
operand function is costly and the argument contains a significant number of duplicate
elements. Note however, that if the operand function causes side effects, the operation
of dynamic and primitive versions will be different.

each«{ A
shp«pw A
vec<,w A
nub«uvec A
res<ao’ nub A
idx<nubtivec A
shppidx>~cres A

}

Fast each:
Shape and
ravel of arg.
Vector of unique elements.
Result for unique elts.
Indices of arg in nub
distribute result.

The dyadic e 1se operator applies its left (else right) operand to its right argument

depending on its left argument.

else«{
o: oo w A True: apply Left operand
ww w A Else, .. Right
}
0 1 [elsel™ 2.5 A Try both false and true.

106 Dyalog APL/W Language Reference

Recursion

A recursive Dynamic Function can refer to itself using its name explicitly, but because
we allow unnamed functions, we also need a special symbol for implicit self-reference:
'v'. For example:

fact«{ A Factorial w.
w<l: 1 A Small w, finished,
wxV w-1 A Otherwise recur.

}

Implicit self-reference using ' V' has the further advantage that it incurs less
interpretative overhead and is therefore quicker. Tail calls using ' V' are particularly
efficient.

Recursive Dynamic Operators refer to their derived functions, that is the operator bound
with its operand(s) using V or the operator itself using the compound symbol: VV. The
first form of self reference is by far the more frequently used.

pow<{ A Function power.
0=0:w A Apply function operand o times.
(0-1)V oot w A oo 00 OO ... W

}

The following example shows a rather contrived use of the second form of (operator)
self reference. The ex p operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original operand

function:
exp<+{ A Exponential fn application.
0=0:00 A Apply operand 2xa times.
(o-1)aoocao VV w A (odeaa)o(...) ... w
}
succ«<{1l+w} A Successor (increment).

10 succ exp O
1024

Chapter 2 Defined Functions & Operators 107

Example: Pythagorean triples

The following sequence shows an example of combining Dynamic Functions and
Operators in an attempt to find Pythagorean triples: (3 4 5)(5 12 13) ...

sqrt«{wx0.5} A Square root.
sqrt 9 16 25
3 45
hyp«{sqrt+/>wx2} A Hypoteneuse of triangle.

hyp(3 &) (4 5)(5 12)
5 6.403124237 13

intg«{w=lw} A Whole number?
intg 2.5 3 4.5

010
pyth<{intg hyp w} A Pythagorean pair?
pyth(3 &) (4 9)(5 12)

101
pairs«<{,ww w} A Pairs of numbers 1..w.
pairs 3

11 12 13 21 22 23 31 32 33

filter<«{(oo w)/w} A Op: w filtered by aa.
pyth filter pairs 12 A Pythagorean pairs 1..12

34+ 4#3 512 68 86 912 125 12 9

108 Dyalog APL/W Language Reference

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

rpm<{ A Relatively prime?
w=0:0=1 A C.f. Euclid's gcd.
wV wlo

Y/ A Note the /*

rem(2 4)(3 4)(6 8)(16 27)
0101

rpm filter pyth filter pairs 20
34 43 512 8 15 12 5 15 8

We can use an operator to combine the tests:

and<«{ A Lazy parallel 'And'.
mask<ao w A Left predicate selects...
mask\ww mask/w A args for right predicate.
}

pyth and rpm filter pairs 20
34+ 43 512 815 125 15 8

Better, but we still have some duplicates: (3 %) (4 3).
less«{</>w}
less(3 4) (4 3)

10

less and pyth and rpm filter pairs 40
34 512 724 8 15 9 40 12 35 20 21

And finally, as promised, triples:

{w,hyp w}"less and pyth and rpm filter pairs 35
345 512 13 7 24 25 8 15 17 12 35 37 20 21 29

Chapter 2 Defined Functions & Operators

109

A Larger Example

Function tokens uses nested local D-Fns to split an APL expression into its

constituent tokens. Note that all calls on the inner functions: 1ex, acc, and the
unnamed D-Fn in each token case, are tail calls. In fact, the only stack calls are those on
function: a1, and the unnamed function: {wv~1¢w}, within the ‘Char literal® case.

tokens<«{

alph<0A,0A, ' _aA',2611740AV
all«{+/M\oaew}
acc<{(a,t/w)lex>¢/w}
lTex<{

O=pw:o ¢ hd«tw

Lex of APL src line.

No. of leading aew.

A

A Alphabet for names.
A

A Accumulate tokens.

A Next char else done.

hd=" "':o{ A White Space.
size«w all' '
0 acc size w

tw

hdealph:af{ A Name
size«w all alph,dD
0 acc size w

tw

hde '[0: ' :a{ A System Name/Keyword
size«w all hd,alph
0 acc size w

tw

hd=""'"'":a{ A Char literal
size«+/"\{wvT1ow}#\hd=w
0 acc size w

tw

hde[D, ' ' :a{
size«w all OD,'.TE'
o acc size w

tw

hd='a':0 acc(pw)w
o acc 1 w

(Opce''")lex,w

A Numeric literal

A Comment
A Single char token.

display tokens'xtok«sizetsrce a Next token'

->———
.

I xtok|

e,
|sizel
1 1

'->___. . .
|srcel | |
1 1

110

Dyalog APL/W Language Reference

Restrictions

Currently multi-line Dynamic Functions can’t be typed directly into the session. The
interpreter attempts to evaluate the first line with its trailing left brace and a SYNTAX
ERROR results.

Dynamic Functions need not return a result. However even a non-result-returning
expression will terminate the function, so you can’t, for example, call a non-result-

returning function from the middle of a Dynamic Function.

You can trace a Dynamic Function only if it is defined on more than one line.
Otherwise it is executed atomically in the same way as an execute (¢) expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a line and
seeing nothing change on the screen.

Dynamic Functions do not currently support [Ics.

Supplied Workspaces

You can find more examples of dynamic functions and operators in workspaces in the
samples\dfns directory.

DFNS.DWS - a selection of utility functions.

MIN.DWS - an example application.

Chapter 2 Defined Functions & Operators 111

APL Line Editor

The APL Line Editor described herein is included for completeness and for adherence
to the ISO APL standard. See User Guide for a description of the more powerful full-
screen editor, (JED.

Using the APL Line Editor, functions and operators are defined by entering Definition
Mode. This mode is opened and closed by the del symbol , v. Within this mode, all
evaluation of input is deferred. The standard APL line editor (described below) is used
to create and edit operations within definition mode.

Operations may also be defined using the system function [JF X (implicit in a [JED fix)
which acts upon the canonical (character), vector, nested or object representation form
of an operation. (See Chapter 6 and User Guide for details.)

Functions may also be created dynamically or by function assignment. (See above and
Chapter 4.)

The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening V symbol is followed by the header line of a defined operation. Redundant
blanks in the request are permitted except within names. If acceptable, the editor
prompts for the first statement of the operation body with the line-number 1 enclosed in
brackets. On successful completion of editing, the defined operation becomes the active
definition in the workspace.

Example
VR<FOO
[1] R<«10
[2] vV
FOO

10

112

Dyalog APL/W Language Reference

The given operation name must not have an active referent in the workspace, otherwise
the system reports defn error and the system editor is not invoked:

JVARS
SALES X Y

VR<SALES Y
defn error

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

VR«A B C D:G
defn error

Listing Defined Operation

The v symbol followed by the name of a defined operation and then by a closing Vv,
causes the display of the named operation. Omitting the function name causes the
suspended operation (i.e. the one at the top of the state indicator) to be displayed and
opened for editing.

Example
VFOOV
V R<FOO
[1] R«10
v
)SI
FOO[1] x
v
vV R«FOO
[1] R«10

(2]

Chapter 2 Defined Functions & Operators 113

Editing Active Defined Operation

Definition mode is entered by typing V followed optionally by a name and editing
directive.

The V symbol on its own causes the suspended operation (i.e. the one at the top of the
state indicator) to be displayed. The editor then prompts for a statement or editing
directive with a line-number one greater than the highest line-number in the function. If
the state indicator is empty, the system reports defn error and definition mode is
not entered.

The V symbol followed by the name of an active defined operation causes the display of
the named operation. The editor then prompts for input as described above. If the name
given is not the name of an active referent in the workspace, the opening request is
taken to be the creation of a new operation as described in paragraph 1. If the name
refers to a pendent operation, the editor issues the message warning pendent
operation prior to displaying the operation. If the name refers to a locked operation,
the system reports defn error and definition mode is not entered.

The V symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the operation.
If the name refers to a pendent operation, the editor issues the message warning
pendent operation prior to actioning the editing directive. If the name refers to a
locked operation, the system reports defn error and definition mode is not entered.

On successful completion of editing, the defined operation becomes the active
definition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example
VFOO[2]
[2] R<«Rx2

[3] v

114 Dyalog APL/W Language Reference

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

Syntax Description

v Closes definition mode

(O] Displays the entire operation

[On] Displays the operation starting at line n
[nO] Displays only line n

[an] Deletes line n

[nam] Deletes m lines starting at line n

[n] Prompts for input at line n

[n]s Replaces or inserts a statement at line n
[n0Om] Edits line n placing the cursor at character

position m
Edit control symbols are:
/ - deletes character above
1 to 9 - inserts that number of spaces
A to Z - inserts multiples of 5 spaces

.text - inserts the text prior to the
character above '.'
,text - inserts the text as above but

continues the edit

Figure 2(iv) : Editing directives

Chapter 2 Defined Functions & Operators 115

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are assigned
as consecutive integers, beginning with [0] for the header line. The number associated
with an operation line remains the same for the duration of the definition mode unless
altered by editing directives. Additional lines may be inserted by decimal numbering.
Up to three places of decimal are permitted. On closing definition mode, operation
lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line or
an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

VR<A PLUS B
[1] R<A+B
[2]

Position

The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered. If a
statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

(2] [0.8]
[0.8] A MONADIC OR DYADIC +
[0.9] A A <> OPTIONAL ARGUMENT

[1]

The editing directive [n]s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

[1] [0] R«{A} PLUS B
(1]

Delete

The editing directive [An], where n is a line number, causes the statement line to be
deleted. The form [nAm], where n is a line number and m is a positive integer, causes
m consecutive statement lines starting from line number n to be deleted.

116

Dyalog APL/W Language Reference

Edit

The editing directive [nOm], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th} character
on a new line for editing. The response is taken to be edit control symbols selected

from:

/ - to delete the character immediately above the symbol.

1to9 - to insert from 1 to 9 spaces immediately prior to the character above the
digit.

AtoZ -toinsert multiples of 5 spaces immediately prior to the character above the

letter, where A =5, B=10, C = 15 and so forth.

- to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then re-display the line
for further editing with the text inserted and any preceding deletions or space
insertions also effected.

- to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then complete the edit of
the line with the text inserted and any preceding deletions or space insertions
also effected.

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if there
are only deletion or space insertion symbols, the statement line is re-displayed with
characters deleted and spaces inserted as specified. The cursor is placed at the first
inserted space position or at the end of the line if none. Characters may be added to the
line which is then interpreted as seen.

The line number may be edited.

Chapter 2 Defined Functions & Operators 117

Examples
[1] (1071
[1] R<A+B

,>(0=[ONC'A"')p1<[LC o
[1] ->(0=[NC'A')p1<[JLC ¢ R«A+B

.O->END
[2] R«B
[3] END:
(4]

The form [n[0] causes the line number n to be displayed and the cursor to be
positioned at the end of the displayed line, omitting the edit phase.

Display

The editing directive [[0]causes the entire operation to be displayed. The form [[n]
causes all lines from line number n to be displayed. The form [n[] causes only line
number n to be displayed:

4 [o0]

[0] R<{A} PLUS B

(0]

[0] (0]

[0] R<{A} PLUS B

[0.1] Aa MONADIC OR DYADIC +

[1] >(0=[ONC'A"')p1+[LC ¢ R<«A+B ©-END
[2] R<B

[3] "END:

(4]

Close Definition Mode

The editing directive V causes definition mode to be closed. The new definition of the
operation becomes the active version in the workspace. If the name in the operation
header (which may or may not be the name used to enter definition mode) refers to a
pendent operation, the editor issues the message warning pendent operation
before exiting. The new definition becomes the active version, but the original one will
continue to be referenced until the operation completes or is cleared from the State
Indicator.

118 Dyalog APL/W Language Reference

If the name in the operation header is the name of a visible variable or label, the editor
reports defn error and remains in definition mode. It is then necessary to edit the
header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports
defn error, and re-displays the line leaving the cursor beyond the end of the text on
the line. Backspace/linefeed editing may be used to alter or cancel the change:

(3] [oO] - display line 0

[0] R<{A} PLUS B

[0] R«{A} PLUS B:G;H - put syntax error in line O
defn error

[0] R<{A} PLUS B:G:H

;G H
[1]

line redisplayed
backspace/linefeed editing

Local names may be repeated. However, the line editor reports warning messages as
follows:

1. If a name is repeated in the header line, the system reports "warning duplicate
name" immediately.

2. Ifalabel has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. Ifalabel has the same name as another label, the system reports "warning duplicate
label" on closing definition mode.

Chapter 2 Defined Functions & Operators 119

Improper syntax in expressions within statement lines of the function is not detected by
the system editor with the following exceptions:

e If the number of opening parentheses in each entire expression does not equal the
number of closing parentheses, the system reports "warning unmatched
parentheses", but accepts the line.

e [f the number of opening brackets in each entire expression does not equal the
number of closing brackets, the system reports "warning unmatched brackets", but
accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other
syntactical errors in statement lines will remain undetected until the operation is
executed.

Example

[4]1 Re(A[:1)=2)F¢EXP, 'x2
warning unmatched parentheses

¥a5ning unmatched brackets
5

Note that there is an imbalance in the number of quotes. This will result ana SYNTAX
ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

120 Dyalog APL/W Language Reference

121

CHAPTER 3

Object Oriented Programing

Introducing Classes

A Class is a blueprint from which one or more Instances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together as
Members) which are defined within the body of the class script or are inherited from
other Classes. This version of Dyalog APL does not support Events although it is
intended that these will be supported in a future release. However, Classes that are
derived from .Net types may generate events using 4 [INQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new
versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class
can have Shared members which can be used without first creating an instance

Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A class
script may also be constructed from a vector of character vectors, and fixed using
OFIX.

A class script begins with a : C1ass statement and ends witha :EndClass
statement.

122

Dyalog APL/W Language Reference

For example, using the editor:

JCLEAR
clear ws
JED oAnimal

[an edit window opens containing the following skeleton Class script —]

:Class Animal
:EndClass

[the user edits and fixes the Class script]

JCLASSES
Animal

ONCc'Animal'
9.4

Editing Classes

Between the :Class and : EndC1ass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may not
add or alter functions by editing them independently and you may not add variables by
assignment or remove objects with [JE X.

When you re-fix a Class Script using the Editor or with [JF IX, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in its
entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so forth
that are created by actions external to the class.

For example, if X is not a public member of the class MyC1ass, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X«99
The namespace is analogous to the namespace associated with a GUI object and will be

re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

Chapter 3 Object Oriented Programing 123

Inheritance

If you want a Class to derive from another Class, you simply add the name of that
Class to the : C1ass statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS 2.

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the Class
hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If the
global name of the base class is expunged, the derived class will still have the base
class reference, and the base class will therefore be kept alive in the workspace. The
derived class will be fully functional, but attempts to edit it will fail when it attempts to
locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is refixed, will the new base
class be detected.

If you edit, refix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or refixing the
derived class(es) after the base class has been substituted.

Classes that derive from .Net Types

You may define a Class that derives from any of the .Net Types by specifying the name
of the .Net Type and including a : USING statement that provides a path to the .Net
Assembly in which the .Net Type is located.

Example

:Class APLGreg: GregorianCalendar
:Using System.Globalization

;éﬁd01ass

124

Dyalog APL/W Language Reference

Classes that derive from the Dyalog GUI

You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Po 1y object, the Class
specification would be:

:Class Duck:'Poly'
:EndClass

The Base Constructor for such a Class is the [JWC system function.

For further details see Writing Classes Based on the Dyalog GUI.

Instances

A Class is generally used as a blueprint or model from which one or more Instances of
the Class are constructed. Note however that a class can have Shared members which
can be used directly without first creating an instance.

You create an instance of a Class using the JNEW system function which is monadic.

The 1-or 2-item argument to ONEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When [INEW executes, it first creates an empty instance namespace and tags it with an
internal pointer to its Class.

When [ONEW executes, it creates a regular APL namespace to contain the Instance, and
within that it creates an Instance space, which is populated with any Instance Fields
defined by the class (with default values if specified), and pointers to the Instance
Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to [JNEW. If JNEW was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

The result of ONEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

Chapter 3 Object Oriented Programing 125

Constructors

A Constructor is a special function defined in the Class script that is to be run when an
Instance of the Class is created by ONEW. Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a : Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, witha : Access
Pub 11 c statement, because like all Class members, Constructors default to being
Private. Private Constructors currently have no use or purpose, but It is intended that
they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only one)
may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Constructor
argument. See Constructor Overloading for details.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor
function may be invoked is by (INEW. See Base Constructors for further details.

When [NEW is executed with a 2-item argument, the appropriate monadic Constructor
is called with the second item of the [(INEW argument.

The niladic (default) Constructor is called when [INEW is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a fill item for the
Class.

Note that [JNEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Example

The DomesticParrot Class defines a Constructor function egg that initialises the
Instance by storing its name (supplied as the 2™ item of the argument to ONEW) in a
Public Field called Name.

126 Dyalog APL/W Language Reference

:Class DomesticParrot:Parrot
:Field Public Name

V egg name
:Implements Constructor
tAccess Public
Name<name

v

:Endéiéss A DomesticParrot

pol<[INEW DomesticParrot 'Polly’
pol.Name
Polly

Constructor Overloading

NameList header syntax is used to define different versions of a Constructor each with
a different number of parameters, referred to as its signature. The Clover Class
illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is called.
If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.
A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor

function may be invoked is by [INEW. See Base Constructors for further details.

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument
Makel 1-item vector
Make?2 2-item vector
Make3 3-item vector
MakeO No argument
MakeAny Any array accepted

Chapter 3 Object Oriented Programing 127

Clover Class Example

:Class Clover A Constructor Overload Example
:Field Public Con
v MakeO
:Access Public
:Implements Constructor
make O

vV Makel(arg)
:Access Public
:Implements Constructor
make arg

vV Make2(argl arg2?)
:Access Public
:Implements Constructor
make argl arg2

vV Make3(arg!l arg2 arg3)
:Access Public
:Implements Constructor
make argl arg2 arg3

V MakeAny args
tAccess Public
:Implements Constructor
make args

v

V make args
Con<«(pargs)(2-0SI)args

v

tEndClass a Clover

128

Dyalog APL/W Language Reference

In the following examples, the Make function (see Clover Class listing for details)
displays:

<shape of argument> <name of Constructor called><argument>
(see function Make)

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the Make 1 Constructor.Note that, although the
argument to Make1 is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable argl.

(ONEW Clover(,1)).Con
Makel 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make3 respectively

(ONEW Clover(1 2)).Con
2 Make2 1 2

(ONEW Clover(1 2 3)).Con
3 Make3 1 2 3

Creating an Instance with any other Constructor argument causes the system to choose
MakeAny.

(OONEW Clover(110)).Con
10 MakeAny 1 2 3 4567 8 9 10
(ONEW Clover(2 2pik4)).Con
2 2 MakeAny 1 2
34

Note that a scalar argument will call MakeAny and not Makel.

(ONEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system to
choose MakeO.

(ONEW Clover).Con
MakeO O

Chapter 3 Object Oriented Programing 129

Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when ONEW is
invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
Species<«spec

vV default
tAccess Public Instance
:Implements Constructor
Species+'Default Bird'

V R«Speak
:Access Public
R«'Tweet, tweet!'
\'

:EndClass a Bird

The niladic Constructor (in this example, the function default) is invoked when
ONEW is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor egg, except that the value of the
Species Fieldissetto ‘Default Bird'.

Birdy<[ONEW Bird
Birdy.Species
Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the Class.
For example, in the expression (3tBirdy), APL has to create two fill items of
Birdy (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:

TweetyPie«3>2101Birdy

130 Dyalog APL/W Language Reference

The 101 (temporarily) ceates a 10-element array comprising the single entity Birdy
padded with 9 fill-elements of Class B1ird. To obtain the 9 fill-elements, APL calls the
niladic Constructor 9 times, one for each separate prototypical Instance that it is
required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?

In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese
:Field Public Name<«''
:Field Public Strength<«@
vV make2(name strength)
:Access Public
:Implements Constructor
Name Strength<name strength
v
vV makel name
tAccess Public
:Implements Constructor
Name Strength<name 1
v
vV make_excuse
:Access Public
:Implements Constructor
O«'The cat ate the last one!'
v
:EndClass

We might create an array of Instances of the Cheese Class as follows:

cdata<('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses<{[INEW Cheese w} 'cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board«(cheeses.Strength<3)/cheeses
board.Name
Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board«(cheeses.Strength>5)/cheeses
board.Name
The cat ate the last one!

Chapter 3 Object Oriented Programing 131

Note that this message is not the result of the expression, but was explicitly displayed
by the make_excuse function. The clue to this behaviour is the shape of board; it is
empty!

pboard
0

When a reference is made to an empty array of Instances (strictly speaking, a reference
that requires a prototype), APL creates a new Instance by calling the niladic (default)
Constructor, uses the new Instance to satisfy the reference, and then discards it. Hence,
in this example, the reference:

board.Name
caused APL to run the niladic Constructor make_excuse, which displayed:
The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely after
the behaviour of empty arrays in general. In particular, the Class designer is given the
task of deciding what the type of the members of the prototype are.

Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty arrays,
a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs.
2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:
a. ifitis areference is to a Field, the value of the Field is obtained
b. ifitis areference is to a Property, the PropertyGet function is run
c. ifitis areference is to a Method, the method is executed
d. ifitis an assignment, the assignment is performed or the PropertySet
function is run
4. ifitis areference, the result of step 3 is used to generate an empty result array
with a suitable prototype by the application of the function {Opcw} to it
5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

132 Dyalog APL/W Language Reference

Example

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
[OF Species<«spec

\%
vV default
:Access Public Instance
:Implements Constructor
(OF Species<«'Default Bird'
#.DISPLAY Species
v
V R«Speak
tAccess Public
#.DISPLAY R<«'Tweet, Tweet, Tweet'
v

:EndClass A Bird
First, we can create an empty array of Instances of Bird using Op.
Empty<«Op[ONEW Bird 'Robin'

A reference to Empty.Species causes APL to create a new Instance and invoke the
niladic Constructor de fault. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

DISPLAY Empty.Species

APL then retrieves the value of Species ('Default Bird'), applies the function
{Opcw} to it and returns this as the result of the expression.

A reference to Empty.Speak causes APL to create a new Instance and invoke the
niladic Constructor default. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

Chapter 3 Object Oriented Programing 133

DISPLAY Empty.Speak

APL then involes function Speak which displays ' Tweet, Tweet, Tweet' and
returns this as the result of the function.

APL then applies the function {Op<cw} to it and returns this as the result of the
expression.

Base Constructors

Constructors in a Class hierarchy, are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to
participate in the initialisation of an Instance.

Every Constructor function contains a: Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally be
followed by the : Base control word and an arbitrary expression.

The statement:
:Implements Constructor :Base expr

calls a monadic Constructor in the Base Class. The choice of Constructor depends upon
the rank and shape of the result of expr (see Constructor Overloading for details).

Whereas, the statement:
:Implements Constructor
or

:Implements Constructor :Base

calls the niladic Constructor in the Base Class.

134

Dyalog APL/W Language Reference

Note that during the instantiation of an Instance, these calls potentially takes place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails witha LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
witha LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way a
Constructor function may be invoked is by ONEW. The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when a
new Instance is instantiated. If Constructor functions were allowed to call one another,
there would be several calls on the Base Constructor. Similarly, if a Constructor could
be called directly it would potentially duplicate the Bse Constructor call.

Chapter 3 Object Oriented Programing

135

Niladic Example

In the following example, DomesticParrot is derived from Parrot which is

derived from B i rd. They all share the Field De s c (inherited from B i rd). Each of the
3 Classes has its own niladic Constructor called egg0.

:Class Bird
:Field Public Desc
vV egg0
tAccess Public
:Implements Constructor
Desc«'Bird'

\'
:EndClass A Bird

:Class Parrot: Bird
vV egg0
:Access Public
:Implements Constructor
Desc,«'>Parrot'
\'
:EndClass A Parrot

:Class DomesticParrot: Parrot
vV egg0
:Access Public
:Implements Constructor
Desc,<«'>DomesticParrot'
\'
:EndClass A DomesticParrot

(ONEW DomesticParrot).Desc

Bird-Parrot-DomesticParrot

Explanation

[INEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. As soon as the line:

:Implements Constructor

is encountered, [INEW calls the niladic constructor in the Base Class Parrot.egg0

Parrot.eggO starts to execute and as soon as the line:

:Implements Constructor

is encountered, [JNEW calls the niladic constructor in the Base Class Bird.eggO.

136

Dyalog APL/W Language Reference

When the line:
:Implements Constructor

is encountered, ONEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the State Indicator unwinds —

Bird.egg0 executes Desc«+'Bird''
Parrot.egg0 executes Desc,«'»Parrot'’
DomesticParrot.egg0 execute Desc,«'~>DomesticParrot"''

Monadic Example

In the following example, DomesticParrot is derived from Parrot which is
derived from B i rd. They all share the Field Species (inherited from B i rd) but only
aDomesticParrot has a Field Name. Each of the 3 Classes has its own Constructor
called egg.

:Class Bird
:Field Public Species
V egg spec
:Access Public Instance
:Implements Constructor
Species<spec
v

:Endéiéss A Bird

:Class Parrot: Bird
V egg species
tAccess Public Instance
:Implements Constructor :Base 'Parrot: ',species
v

:Endéiéss A Parrot

:Class DomesticParrot: Parrot
:Field Public Name
vV egg(name species)
:Access Public Instance
:Implements Constructor :Base species
[0OF Name<«name
\4

:Endéiéss A DomesticParrot

pol<[ONEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Chapter 3 Object Oriented Programing 137

Explanation

ONEW creates the new instance and runs the Constructor DomesticParrot.egg.
The egg header splits the argument into two items name and species. As soon as
the line:

:Implements Constructor :Base species

is encountered, [INEW calls the Base Class constructor Parrot . egg, passing it the
result of the expression to the right, which in this case is simply the value in species.

Parrot.egg starts to execute and as soon as the line:
:Implements Constructor :Base 'Parrot: ',species

is encountered, [INEW calls itzs Base Class constructor B1ird.egg, passing it the result
of the expression to the right, which in this case is the character vector 'Parrot:
catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.
At this point, the State Indicator would be:

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]x
[constructor]
tbase
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
tbase
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]

Bird.egg then returns to Parrot.egg which returns to DomesticParrot.egg

Finally, DomesticParrot.egg[3] is executed, which establishes Field Name and
the Display Format (ODF) for the instance.

138 Dyalog APL/W Language Reference

Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with an
Instance.

An Instance of a Class is destroyed when:
e The Instance is expunged using [JEX or) ERASE.
e A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

e The Instance is re-assigned (see below)

e The result of INEW is not assigned (the instance gets created then immediately
destroyed).

e APL creates (and then destroys) a new Instance as a result of a reference to a
member of an empty Instance. The destructor is called after APL has obtained
the appropriate value from the instance and no longer needs it.

e The constructor function fails. Note that the Instance is actually created before
the constructor is run (inside it), and if the constructor fails, the fledgling
Instance is discarded. Note too that this means a destructor may need to deal
with a partially constructed instance, so the code may need to check that
resources were actually acquired, before releasing them.

e On the execution of)CLEAR,)LOAD, [JLOAD or [JOFF.

Note that an Instance of a Class only disappears when the last reference to it
disappears. For example, the sequence:

I1<[JNEW MyClass
I2«I1
JERASE I

will not cause the Instance of MyC1ass to disappear because it is still referenced by
I2.

A Destructor is identified by the statement : Implements Destructor which
must appear immediately after the function header in the Class script.

:Class Parrot

v kil
:Implements Destructor
‘This Parrot is dead'
v

:Endéiéss A Parrot
pol«[INEW Parrot 'Scarlet Macaw'

)JERASE pol
This Parrot is dead

Chapter 3 Object Oriented Programing 139

Note that reassignment to po 1 causes the Instance referenced by po1 to be destroyed
and the Destructor invoked:

pol<[INEW Parrot 'Scarlet Macaw'
pol<«[NEW Parrot 'Scarlet Macaw'
This Parrot is dead

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure:
DomesticParrot => Parrot => Bird
containing the following Destructors:

:Class DomesticParrot: Parrot

vV okill
:Implements Destructor
'This ', (s0THIS),' is dead'
v

:EndClass A DomesticParrot
:Class Parrot: Bird

v okill
:Implements Destructor
‘This Parrot is dead'
v

:Endéiéss A Parrot
:Class Bird

vV okill
:Implements Destructor
'This Bird is dead'

v

:Endéiéss A Bird

Destroying an Instance of Domest icParrot will run the Destructors in
DomesticParrot,Parrot and Bird and in that order.

pol<[INEW DomesticParrot
JCLEAR

This Polly is dead

This Parrot is dead

This Bird is dead

clear ws

140

Dyalog APL/W Language Reference

Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together as
Members) which are defined within the body of the Class script or are inherited from
other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. D-fns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to set
the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all sorts
of operations. In particular, the value of a Property is not stored in the Property and
may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members
are common to all Instances and Shared Members may be referenced directly on the
Class itself.

Chapter 3 Object Oriented Programing 141

Fields

A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However, Fields
differ from variables in that they possess characteristics that control their accessibility.

A Field may be declared anywhere in a Class script by a : F i e 1d statement. This
specifies:

the name of the Field

whether the Field is Public or Private
whether the Field is Instance or Shared
whether or not the Field is ReadOnly
optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields for details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

v

:Endéiéss A DomesticParrot
The Name field is initialised by the Class constructor.
pet<«[INEW DomesticParrot'Polly'

pet.Name
Polly

The Name field may also be modified directly:

pet.Name<«dpet.Name
pet.Name
ylloP

142 Dyalog APL/W Language Reference

Initialising Fields

A Field may be assigned an initial value. This can be specified by an arbitrary
expression that is executed when the Class is fixed by the Editor or by [JF I X.

:Class DomesticParrot: Parrot
:Field Public Name<«'Dicky'
tField Public Talks<«1

V egg nm
:Access Public
:Implements Constructor

Name<nm
\%

:Endéiéss A DomesticParrot

Field Talks will be initialised to 1 in every instance of the Class.
pet<[INEW DomesticParrot 'Dicky’
pet.Talks

: pet.Name

Dicky

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: Shared Fields

Chapter 3 Object Oriented Programing 143

Private Fields

A Private Field may only be referenced by code running inside the Class or an Instance
of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 157) has a Private Instance Field named t i e that
is used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
:Access Public Instance
:Trap O
tie«filename OFTIE O
:Else
tie«filename [JFCREATE O
:EndTrap
0ODF filename,'(Component File)'
v

As the field 1s declared to be Private, it is not accessible from outside an Instance of the
Class, but is only visible to code running inside.

F1<[JNEW ComponentFile 'testt'
Fl.tie

VALUE ERROR
Fl.tie

A

144

Dyalog APL/W Language Reference

Shared Fields

If a Field is declared to be Shared, it has the same value for every Instance of the Class.
Moreover, the Field may be accessed from the Class itself; an Instance is not required.

The following example establishes a Shared Field called Months that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise a
Field.

:Class Example

:Using System.Globalization

:Field Public Shared ReadOnly Months<«121 ([ONEW
DateTimeFormatInfo).AbbreviatedMonthNames
:EndClass A Example

A Shared Field is not only accessible from an instance —

EG<[ONEW Example
EG.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

— but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Notice that in this case it is necessary to insert a : Us i ng statement (or the equivalent
assignment to JUSING) in order to specify the .Net search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

[JUSING«'System.Globalization'
124 (0NEW DateTimeFormatInfo).AbbreviatedMonthNames
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Chapter 3 Object Oriented Programing 145

Trigger Fields

A Fields may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change the
Display Form. This can be achieved by making the Field a Trigger as illustrated by the
following example.

Notice that the Trigger function is invoked both by assignments made within the Class
(as in the assignment in ctor) and those made from outside the Instance.

:Class MyClass
:Field Public Name
:Field Public Country<«'England’
V ctor nm
tAccess Public
:Implements Constructor
Name<nm
v
v format
:Implements Trigger Name,Country
[ODF 'My name is ',Name,' and I live in ',Country
v
:EndClass A MyClass

me<[JNEW MyClass 'Pete'
me
My name is Pete and I live in England

me.Country<«'Greece'
me
My name is Pete and I live in Greece

me.Name<«'Kostas'
me
My name is Kostas and I live in Greece

146 Dyalog APL/W Language Reference

Methods

Methods are implemented as regular defined functions, but with some special attributes
that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a V, followed by a valid APL defined function header.
The method definition is terminated by a closing V.

The behaviour of a Method is defined by an : Access control statement.

Public or Private
Methods may be defined to be Private (the default) or Public.
A Private method may only be invoked by another function that is running inside the

Class namespace or inside an Instance namespace. The name of a Private method is not
visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.
An Instance method runs in the Instance namespace and may only be called via the

instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods

Instance Methods may be declared with : Access Overridable.

A Method declared as being Overridable is replaced in situ (i.e.within its own Class) by
a Method of the same name that is defined in a higher Class which itself is declared
with the Override keyword. See Superseding Base Class Methods.

Chapter 3 Object Oriented Programing 147

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the
current Instance, so may be declared as Shared.

:Class Parrot:Bird

V R«Speak times
tAccess Public Shared
R«stimespc'Squark!"’

v

:EndClass A Parrot

wild<[INEW Parrot
wild.Speak 2
Squark! Squark!

Note that Parrot . Speak may be executed directly from the Class and does not in
fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

148 Dyalog APL/W Language Reference

Instance Methods

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class DomesticParrot has a Speak method defined to be Public and Instance.
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited Parrot .Speak.

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

\

V R«Speak times

:Access Public Instance

R<cName,', ',Name

R<tR,timespc' Who's a pretty boy,then!'’
\%

:EndClass A DomesticParrot

pet<[JNEW DomesticParrot'Polly’
pet.Speak 3

Polly, Polly

Who's a pretty boy,then!

Who's a pretty boy,then!

Who's a pretty boy,then!

bi1<[JNEW DomesticParrot'Billy'
bil.Speak 1

Billy, Billy

Who's a pretty boy,then!

Chapter 3 Object Oriented Programing 149

Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it firom within the Base
Class. This behaviour can be altered using the Overridable and Override key words in
the : Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base Class
method in the Base Class, by providing a method which is marked Override. The
typical use of this is to replace code in the Base Class which handles an event, with a
method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in
the base class:

V ErrorHandler
[1] :Access Public Overridable
[2] O«+0DM

\

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

V ErrorHandler;TN
[1] :Access Public Override
[2] O«+0DM
[3] TN«'ErrorLog'0FSTIE O
(4] (DM OFAPPEND TN
[5] OFUNTIE TN

\

If the derived class had a function which was not marked Override, then function in the
derived class which called ErrorHand1er would call the function as defined in the
derived class, but if a function in the base class called ErrorHandler, it would still
see the base class version of this function. With Override specified, the new function
supersedes the function as seen by code in the base class. Note that different derived
classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

150

Dyalog APL/W Language Reference

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined to
allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices. The Numbered Property
is designed to allow APL to perform selections and structural operations on the
Property.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Properties.

If Instance My Inst has a Simple Property Sprop and a Numbered Property Nprop,
the expressions

X«MyInst.SProp
X«MyInst.SProp[2]

both cause APL to call the PropertyGet function to retrieve the entire value of Sprop.
The second statement subsequently uses indexing to extract just the second element of
the value.

Whereas, the expression:

X«MyInst.NProp[2]
causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the

expression:

X«MyInst.NProp

Chapter 3 Object Oriented Programing 151

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty sectionina Class
Script.

Within the body of a Property Section there may be:

one or more : Access statements
a single PropertyGet function.

a single PropertySet function

a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety and
re-assigned (by APL) in its entirety. The following examples are taken from the
ComponentFile Class Class (see page 157).

The Simple Property Count returns the number of components on a file.

:Property Count
tAccess Public Instance
V r<get
r< 1+2>0FSIZE tie

v
:EndProperty A Count

F1<[INEW ComponentFile 'testl'
F1.Append'Hello World'

1
F1.Count
1
F1.Append 42
2
F1.Count
2

Because there is no set function defined, the Property is read-only and attempting to
change it causes SYNTAX ERROR

F1.Count<«99

SYNTAX ERROR
F1.Count«99
A

152 Dyalog APL/W Language Reference

The Access Property has both get and set functions which are used, in this simple
example, to get and set the component file access matrix.

:Property Access
t:Access Public Instance
V r<get
r<[FRDAC tie
v
V set am;mat;OK
mat«am.NewValue
:Trap O
OK<«(2=ppmat)~ (3=2>pmat)**/,mat=|mat
:Else
OK<0
:EndTrap
'bad arg'0OSIGNAL(~O0K)/11
mat [OFSTAC tie
v
:EndProperty A Access

Note that the set function must be monadic. Its argument, supplied by APL, will be
an Instance of PropertyArguments. This is an internal Class whose NewValue
field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been assigned.
The function may validate the value reject or accept it (as in this example), or perform
whatever processing is appropriate.

F1<[ONEW ComponentFile 'testil'
pFl.Access
0 3
F1.Access«3 3p28 2105 16385 0 2073 16385 31 "1 O
Fl.Access
28 2105 16385
0 2073 16385
31 1 0

F1.Access<«'junk'
bad arg

F1.Access<«'junk'
A

Fi1.Access«1l 2p10
bad arg
F1.Access«1 2p10

A

Chapter 3 Object Oriented Programing 153

Simple Shared Properties

The ComponentFile Class (see page 157) specifies a Simple Shared Property named
F i 1es which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also possible
to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a
whole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared
V r<get
r<JFLIB""'

v
:EndProperty

Note that [JFLIB (invoked by the Fi 1es get function) does not report the names of
tied files.

F1«[INEW ComponentFile 'testl'

Oex'F1'

F2<[JNEW ComponentFile 'test2'

F2.Files A NB [OFLIB does not report tied files
test1

Oex'F2'

Note that a Shared Property may be accessed from the Class itself. It is not necessary to
create an Instance first.

ComponentFile.Files
test1
test2

154

Dyalog APL/W Language Reference

Numbered Properties

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property.

If the expression uses indexing, APL checks that the index or indices are within the
bounds of these dimensions, and then calls the PropertyGet or PropertySet function. If
the expression specifies a single index, APL calls the PropertyGet or PropertySet
function once. If the expression specifies multiple indices, APL calls the function
successively.

If the expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the PropertyGet or
PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an
argument of type PropertyArguments.

Example

The ComponentFile Class Class (see page 157) specifies a Numbered Property named
Component which represents the contents of a specified component on the file.

:Property Numbered Component
:Access Public Instance
V r<shape
r<-1+2>50FSIZE tie
v
V r«get arg
r<[JFREAD tie arg.Indexers
v
vV set arg
arg.NewValue [JFREPLACE tie,arg.Indexers
v
:EndProperty

Chapter 3 Object Oriented Programing 155

F1<[INEW ComponentFile 'testt’

F1.Append (15)xcil
12345

F1.Count

F1.Component[4]
L 8 12 16

4oF1.Component
L 8 12 16

(ct 3)[F1.Component
4L 8 12 16 3 6 9 12

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

F1.Component
1234 2468 36912 4 812 16 5 10 15 20

((c4 3)[F1.Component)«'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]

INDEX ERROR
F1.Component[6]
A

F1.Component[1;2]

RANK ERROR
F1.Component[1:2]
A

156

Dyalog APL/W Language Reference

The Default Property

A single Numbered Property may be identified as the Default Property for the Class. If
a Class has a Default Property, indexing with the [] primitive functionand [. ..]
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class Class (see page 157) can
be extended by adding the control word Default to the :Property statement for
the Component Property.

Indexing may now be applied directly to the Instance F 1. In essence, F1[n] is simply
shorthand for F1.Component[n] and n[JF1 is shorthand for n[JF 1 .Component

:Property Numbered Default Component
:Access Public Instance
V r<shape
r<-1+2>5[JFSIZE tie
v
V r<get arg
r<[JFREAD tie arg.Indexers
v
vV set arg
arg.NewValue [JFREPLACE tie,arg.Indexers

v
:EndProperty

F1<[OJNEW ComponentFile 'testi'
F1.Append ™ (15)xcil

12345
F1.Count
5
FI[4]
4L 8 12 16
(e4 3)[F1

4L 8 12 16 3 6 9 12
((c4 3)[JF1)«'Hello' 'World'
F1[3]

World

Note however that this feature applies only to indexing.
4oF1

DOMAIN ERROR
4oF1

A

Chapter 3 Object Oriented Programing

157

ComponentFile Class Example

:Class ComponentFile
:Field Private Instance tie

V Open filename
:Implements Constructor
tAccess Public Instance
:Trap O
tie«filename [OFTIE O
:Else
tie«<filename [OFCREATE O
:EndTrap
ODOF filename,'(Component File)'

V Close
tAccess Public Instance
OFUNTIE tie

V r<Append data
:Access Public Instance
r<«data OFAPPEND tie

V Replace(comp data)
tAccess Public Instance
data [FREPLACE tie,comp

\'4

:Property Count
tAccess Public Instance

V r<get
r< 1+2>5[JFSIZE tie

v
:EndProperty A Count

158 Dyalog APL/W Language Reference

Component File Class Example (continued)

:Property Access
t:Access Public Instance
V r<get arg
r«<[JFRDAC tie
v
V set am;mat;OK
mat«am.NewValue
:Trap O
OK<«(2=ppmat)A(3=2>pmat)**/,mat=mat
:Else
OK<«0
:EndTrap
'bad arg'0SIGNAL(~O0K)/11
mat OFSTAC tie
v
:EndProperty ma Access

:Property Files
:Access Public Shared
V r<get
r<dFLIB""

v
:EndProperty

:Property Numbered Default Component
tAccess Public Instance
V r<shape args
r<-1+2o50FSIZE tie
v
V r<get arg
r<c[JFREAD tie,arg.Indexers
v
vV set arg
(oarg.NewValue)FREPLACE tie,arg.Indexers

v
:EndProperty

V Delete filestie
:Access Public Shared
tie«file OFTIE O
file OFERASE tie
v
:EndClass A Class ComponentFile

Chapter 3 Object Oriented Programing 159

Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not restricted
to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assignment)
and the array returned by the get function (for an indexed reference). If the rank or
shape of these arrays fails to conform to the rank or shape of the indices, APL will
issue a RANK ERROR or LENGTH ERROR.

Note too that indices may not be elided. If KProp is a Keyed Property of Instance I1,
the following expressions would all generate NONCE ERROR.

I1.KProp

I1.KProp[]«t0
I1.KProp[;]«10
I1.KProp['One' 'Two';]«10
I1.KProp[;'One' 'Two']«10

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse?2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named Values. The following expressions show how it might be used.

SAL1<[INEW Sparse2
SA1.ValuesFC'Widgets';C'Jan']+100
SA1.Values[c'Widgets';c'Jan']
100
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar'
‘Oct']«10x2 3p16
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
10 20 30
40 50 60
SA1.Values[c'Widgets';'Jan' 'Oct']
10 30
SA1.Values['Grommets' 'Widgets';c'Oct']
60
30

160 Dyalog APL/W Language Reference

Sparse2 Class Example

:Class Sparse2 A 2D Sparse Array
:Field Private keys
:Field Private values
vV make
tAccess Public
:Implements Constructor
keys*OpC" (]
values<8
v
:Property Keyed Values
tAccess Public Instance
vV v<get arg:;k
k<arg.Indexers
OSIGNAL(2#pk)/4
k<«fixkeys k
v<(values,0)[keystik]

V set arg:;news;k;:;vsin
v<arg.NewValue
k«arg.Indexers
OSIGNAL(2zpk) /4
k<fixkeys k
v<(pk) (p*(21=p,v))
OSIGNAL((pk)#pv)/5
k ve,"k v
:If v/new<~kekeys

values,<new/v
keys,«<new/k
k v/~<«c~new
:EndIf
:If O<pk
values[keystik]«v
:EndIf

v

v
:EndProperty

Vv k<fixkeys k
ke(2#="k){, (cxa)w} 'k
k«d(o.{2,/ca w})/k

v
:EndClass A 2D Sparse Array

Chapter 3 Object Oriented Programing 161

Internally, Sparse?2 maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys (indices)
inarg.Indexer and values in arg.NewValue. The function updates the values of
existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices)
in arg.Indexer. The function uses these keys to retrieve the corresponding values,

inserting Os for non-existent keys.

Note that in the expression:

SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
the structure of arg.Indexer is:
| g U |
| S ————— y e ————— . | >—— >—— >—— | |
| | |Widgets| |Grommets| | | |Jan| [Mar| |Oct| | |
| b e e] L 1 I I___I l___l I___I I |
| IE _____________________] lE __________________ 1 |

162 Dyalog APL/W Language Reference

Example

A second example of a Keyed Property is provided by the KeyedF i 1e Class which is
based upon the ComponentFile Class Class (see page 168) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
OML<0

vV Open filename

:Implements Constructor :Base filename

:Access Public Instance

:If Count>0
Keys«<{>w>[JBASE.Component} "1Count

tElse
Keys<«Qpc'

:EndIf

v

:Property Keyed Component
tAccess Public Instance
V r<get arg;keys;sink
keys«2arg.Indexers
OSIGNAL(~~/keyseKeys)/3
r<{2>w>o[BASE.Component} 'Keystikeys

V set arg;new;keys;vals
vals<«arg.NewValue
keys<«oarg.Indexers
OSIGNAL((p,keys)#p,vals)/5
:If v/new<~keyseKeys
sink<«Append V&t (cnew)/ keys vals
Keys,<new/keys
keys vals/=<«c~new
tEndIf
:If O<p,keys
Replace " 4®t(Keysikeys) (4®tkeys vals)
:EndIf

v
:EndProperty
tEndClass A Class KeyedFile
K1<[ONEW KeyedFile 'ktest'

K1.Count

0
K1.Component[c'Pete' J«42
K1.Count

1

K1.Component['John' 'Geoff'J]«(110)(3 4p112)
K1.Count

Chapter 3 Object Oriented Programing 163

K1.Component['Geoff' 'Pete']
1 2 3 4 42
5 6 7 8
9 10 11 12
K1.Component['Pete' 'Morten']«(3 4p'o')(113)
K1.Count

K1.Component['Morten' 'Pete' 'John']
1 112 113 oooo 1 23 4567 89 10
1 122 123 ©cooo

oooo

Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents a
protocol that an application must follow in order to manipulate a Class in a particular
way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own individual
version of Compare. An application can then be written that sorts Instances of any
Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method defined
in the Interface:

:Implements Method <InterfaceName.MethodName>

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The function
name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name,
however, need not be the same as that described in the Interface.

164

Dyalog APL/W Language Reference

Example

The Penguin Class Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Interface FishBehaviour

V R«Swim A Returns description of swimming capability
v

:EndInterface A FishBehaviour

:Interface BirdBehaviour

V R«Fly A Returns description of flying capability

g R<«Lay A Returns description of egg-laying behaviour
g R«Sing A Returns description of bird-song
YEndInterface A BirdBehaviour

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
V R<NoCanfFly
:Implements Method BirdBehaviour.Fly
R«'Although I am a bird, I cannot fly'

V R<LayOneEgg
:Implements Method BirdBehaviour.Lay
R«'I lay one egg every year'

V R«<Croak
:Implements Method BirdBehaviour.Sing
R<'Croak, Croak!'

V R<«Dive
:Implements Method FishBehaviour.Swim
R«'I can dive and swim like a fish'
v
:EndClass A Penguin

Chapter 3 Object Oriented Programing 165

In this case, the Penguin Class derives from Anima1 but additionally supports the
BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members
from both.

Pingo<«[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [JCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [JCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [CLASS Pingo).Lay
I Tay one egg every year

(BirdBehaviour [JCLASS Pingo).Sing
Croak, Croak!

Including Namespaces

A Class may import methods from one or more plain Namespaces. This allows several
Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:
:Include NS

When the Class is fixed by the editor or by JF IX, all the defined functions and
operators in Namespace NS are included as methods in the Class. The functions and
operators which are brought in as methods from the namespace NS are treated exactly
as if the source of each function/operator had been included in the class script at the
point of the : Inc 1ude statement. For example, if a function contains : Signature
or : Access statements, these will be taken into account. Note that such declarations
have no effect on a function/operator which is in an ordinary namespace.

D-fns and D-ops in NS are also included in the Class but as Private members, because
D-fns and D-ops may not contain : Signature or : Access statements. Variables
and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in NS
are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Conversely, functions in NS will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

166 Dyalog APL/W Language Reference

Class supersedes
Included Namespace, supersedes
Base Class

Any number of Namespaces may be included in a Class and the : Inc 1ude statements
may occur anywhere in the Class script. However, for the sake of readability, it is
recommended that you have : Inc 1ude statements at the top, given that any
definitions in the script will supersede included functions and operators.

Example

In this example, Class Pengui n inherits from Animal and includes functions from
the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass A Penguin

Namespace BirdStuf f contains 2 functions, both declared as Public methods.

:Namespace BirdStuff

V R<Fly
:Access Public Instance
R«'Fly, Fly ...'

v

V R<«Lay
tAccess Public Instance
R«<'Lay, Lay '

v
:EndNamespace A BirdStuff

Namespace FishStuf f contain a single function, also declared as a Public method.

:Namespace FishStuff
V R«<Swim
tAccess Public Instance
R<'Swim, Swim '

v
:EndNamespace A FishStuff

Pingo«[INEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...

Pingo.Fly

Fly, Fly

Chapter 3 Object Oriented Programing 167

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuf f . F 1y method with Penguin.F1y. We can
hide BirdStuf f.F 1y with a Private method in Pengu i n that does nothing. For
example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V Fly A Override BirdStuff.Fly
\'4
:EndClass A Penguin

Pingo<«[ONEW Penguin
Pingo.Fly
VALUE ERROR
Pingo.Fly
A

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
tInclude FishStuff
V R«Fly A Override BirdStuff.Fly
tAccess Public Instance
R«'Sadly, I cannot fly'
v
:EndClass A Penguin

Pingo<«[ONEW Penguin
Pingo.Fly
Sadly, I cannot fly

168

Dyalog APL/W Language Reference

Nested Classes

It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Pub1ic. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Pub1ic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Pr i vate Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.Net and is one of the samples
distributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

GolfCourse A Class that represents a Golf Course, having Fields Code and
Name.

Slot A Class that represents a tee-time or match, having Fields Time
and P1ayers. Up to 4 players may play together in a match.

Booking A Class that represents a reservation for a particular tee-time at a
particular golf course. This has Fields OK, Course, TeeTime
and Message. The value of TeeTime is an Instance of a Slot
Class.

StartingSheet | A Class that represents a day's starting-sheet at a particular golf
course. It has Fields OK, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

Chapter 3 Object Oriented Programing 169

GolfService Example Class

:Class GolfService
:Using System

:Field Private GOLFILE«'' n Name of Golf data file
:Field Private GOLFID«0O A Tie number Golf data file

:Class GolfCourse
:Field Public Code«™1
:Field Public Name<«''

V ctor args
:Implements Constructor
tAccess Public Instance
Code Name<«args
(ODF Name,'(',(%Code),"')"
v

:EndClass

:Class Slot
:Field Public Time
:Field Public Players

V ctorl t
:Implements Constructor
:Access Public Instance
Time<«t
Players«Qpc''

vV ctor2 (t pl)
:Implements Constructor
:Access Public Instance
Time Players<«t pl

v format
:Implements Trigger Players
[(IDFsTime Players
v
:EndClass

170 Dyalog APL/W Language Reference

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

V ctor args
:Implements Constructor
:Access Public Instance
OK Course TeeTime Message<«args

v
vV format
:Implements Trigger OK,Message
(DFsCourse TeeTime(20K$Message'OK')
v
:EndClass

:Class StartingSheet
:Field Public OK
:Field Public Course
:Field Public Date
:Field Public Slots<«[INULL
:Field Public Message

V ctor args
:Implements Constructor
:Access Public Instance
OK Course Date<«args
v
v format
:Implements Trigger OK,Message
[ODFs2 1p(sCourse Date)(ts Slots)
v
:EndClass

V ctor file
:Implements Constructor
:Access Public Instance
GOLFILE«file
OFUNTIE(((YOFNAMES)~" ')1<cGOLFILE)>[FNUMS,0
:Trap 22
GOLFID«GOLFILE [OFTIE O
:Else
InitFile
:EndTrap
v

Chapter 3 Object Oriented Programing 17

vV dtor
:Implements Destructor
OFUNTIE GOLFID

V InitFile; COURSECODES ;COURSES; INDEX;I
tAccess Public
:If GOLFID=#=0
GOLFILE [FERASE GOLFID
:EndIf
GOLFID<«GOLFILE [OFCREATE 0
COURSECODES«1 2 3
COURSES«'St Andrews' 'Hindhead' 'Basingstoke'
INDEX<(pCOURSES)p0
COURSECODES COURSES INDEX [JFAPPEND GOLFID
tFor I :In 1pCOURSES
INDEX[I]«6 & [OFAPPEND 1
:EndFor
COURSECODES COURSES INDEX [OFREPLACE GOLFID 1

V R«GetCourses;COURSECODES ;COURSES; INDEX
:Access Public
COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
R«<{[ONEW GolfCourse w} +§tCOURSECODES COURSES

172

Dyalog APL/W Language Reference

V R«GetStartingSheet ARGS;CODE;COURSE;DATE; COURSECODES

sCOURSES; INDEX ; COURSEI; IDN
sDATES; COMPS ; IDATE; TEETIMES
sGOLFERS;IT
tAccess Public
CODE DATE<«ARGS
COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
COURSEI«COURSECODES1CODE
COURSE<[INEW Gol1fCourse(CODE (COURSEI>COURSES,c'"))
R<(JNEW StartingSheet(0 COURSE DATE)
:If COURSEI>pCOURSECODES
R.Message«'Invalid course code'
:Return
:EndIf
IDN«2 [ONQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS<«[JFREAD GOLFID,COURSEI-INDEX
IDATE«DATES1IDN
:If IDATE>pDATES
R.Message«'No Starting Sheet available'
:Return
:EndIf
TEETIMES GOLFERS<[JFREAD GOLFID,IDATE>COMPS
T«DateTime.New (<DATE.(Year Month Day)), " ¢[1]
24 60 1TTEETIMES
R.Sl1ots<«{[ONEW Slot w} 'T,oc 4GOLFERS
R.OK<«1

Chapter 3 Object Oriented Programing 173

V R«MakeBooking ARGS;CODE ;COURSE;SLOT;TEETIME
;s COURSECODES ; COURSES ; INDEX
;s COURSEI; IDN;DATES ; COMPS ; IDATE
sTEETIMES;GOLFERS;OLD; COMP; HOURS
sMINUTES ;NEAREST ; TIME ;NAMES ; FREE
;FREETIMES;I;J;DIFF
tAccess Public
A If GimmeNearest is 0, tries for specified time
A If GimmeNearest is 1, gets nearest time
CODE TEETIME NEAREST<«3tARGS
COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
COURSEI+COURSECODES1CODE
COURSE<[INEW GolfCourse(CODE(COURSEI>COURSES,c"'"'))
SLOT«[JNEW Slot TEETIME
R<[JNEW Booking(0 COURSE SLOT'")
:If COURSEI>pCOURSECODES
R.Message«'Invalid course code'
:Return
:EndIf
:If TEETIME.Now>TEETIME
R.Message«'Requested tee-time is in the past'
:Return
tEndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message<«'Requested tee-time is more than 30
days from now'
:Return
:EndIf
IDN«2 [ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS<«[JFREAD GOLFID,COURSEI-INDEX
IDATE«DATEStIDN
:If IDATE>pDATES
TEETIMES«(24 60.L7 0)+10x"1+11+8x%6
GOLFERS«((pTEETIMES),4)pc''1lowed per tee time

:If 0=0LD<>(DATES<2 [ONQ'.' 'DateToIDN',3t[TS)/
1pDATES
COMP<(TEETIMES GOLFERS)[JFAPPEND GOLFID
DATES,<«IDN
COMPS ,«COMP
(DATES COMPS)[JFREPLACE GOLFID,COURSEI-INDEX
:Else
DATES[OLD]«IDN
(TEETIMES GOLFERS)OFREPLACE GOLFID,
COMP<OLD>COMPS

DATES COMPS [JFREPLACE GOLFID,COURSEI-INDEX
tEndIf

174 Dyalog APL/W Language Reference

tElse
COMP<IDATE>COMPS
TEETIMES GOLFERS«[JFREAD GOLFID COMP
:EndIf
HOURS MINUTES<«TEETIME. (Hour Minute)
NAMES<«(34ARGS)~8""
TIME«24 60LHOURS MINUTES
TIME«10x|0.5+TIME=+10
:If ~NEAREST
I<«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I;]
R.Message«'Not available'
:Return
:EndIf
tElse
:If ~v/FREE<«(pNAMES)<>,/+/0=p GOLFERS
R.Message«'Not available'
:Return
:EndIf
FREETIMES«(FREExXTEETIMES)+32767x~FREE
DIFF<«|FREETIMES-TIME
I<-DIFF1|l/DIFF
:EndIf
J<(>,/0=p "GOLFERS[I;])/14
GOLFERS[I; (pNAMES)1J]«NAMES
(TEETIMES GOLFERS)[FREPLACE GOLFID COMP
TEETIME<«DateTime.New TEETIME.(Year Month Day),
3124 60TI-TEETIMES
SLOT.Time«TEETIME
SLOT.Players<«(>,/0<p" "GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)«1l SLOT
v

:EndClass

Chapter 3 Object Oriented Programing 175

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method InitF i 1e if it doesn't already exist.

G<[INEW GolfService 'F:\HELP11.0\GOLFDATA'
G
#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .Net type System.DateTime, and the
following statements just set up some temporary variables for convenience later.

O«Tomorrow<«([JNEW DateTime(3t[TS)).AddDays 1
31/03/2006 00:00:00

O«TomorrowAt7«Tomorrow.AddHours 7
31/03/2006 07:00:00

The MakeBooking method takes between 4 and 7 parameters viz.

the code for the golf course at which the reservation is required
the date and time of the reservation

a flag to indicate whether or not the nearest available time will do
and a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, [JDF is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead (4-
player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack
OK

176 Dyalog APL/W Language Reference

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave Al
OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00 —

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

— s0 his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal Class
StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00

Chapter 3 Object Oriented Programing 177

Namespace Scripts

A Namespace Script is a script that begins with a : Namespace statement and ends
with a : EndNamespace statement. When a Namespace Script is fixed, it establishes
an entire namespace that may contain other namespaces, functions, variables and
classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

:Namespace a
d<[INEW al
e<[INEW bb2

:Class al
V r<foo
:Access Shared Public
r<(INEW’'b1 b2
\'4
tEndClass A al

V r<goo
r<al.foo
\'

V r<foo
r<(ONEW'b1 b2
\'

:Namespace b

:Class bl

:EndClass A bl

:Class b2
:Class bb2

:EndClass A bb2
:EndClass A b2
:EndNamespace A b
:EndNamespace A a

178

Dyalog APL/W Language Reference

a.d
#.a.[al]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

Note that the names of Classes b1 (a.b.b1l)and b2 (a.b.b2) are not visible from
their CJuncle™ al (a.al).

a.goo
VALUE ERROR
foo[2] r<«[NEW'b1 b2

Notice that Classes in a Namepsace Script are fixed before other objects (hence the
assignments to d and e are evaluated after Classes al and bb2 are fixed), although the
order in which Classes themselves are defined is still important if they reference one
another during initialisation.

Warning: If you introduce new objects of any type (functions, variables, or classes)
into a namespace defined by a script by any other means than editing the script, then
these objects will be lost the next time the script is edited and fixed. Also, if you
modify a variable which is defined in a script, the script will not be updated.

Chapter 3 Object Oriented Programing 179

Namespace Script Example

The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of
instances of DiaryEntry. These are 2-element vectors containing a .NET DateTime
object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances which
causes the invocation of the default constructor DiaryEntry.MakeO when Diary
is fixed. See Empty Arrays of Instances for further explanation.

The entries Field is referenced through the Entry Property, which is defined as
the Default Property. This allows individual entries to be referenced and changed using
indexing on a Di ary Instance

Note that DiaryEntry is defined in the script first (before Diary) because it is
referenced by the initialisation of the Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry
:Field Public When
:Field Public What
v Make(ymdhm wot)
tAccess Public
:Implements Constructor
When What<«([OJNEW DateTime(6t5%tymdhm))wot
[IDFsWhen What
v
vV MakeO
:Access Public
:Implements Constructor
When What<[NULL"''
v
tEndClass A DiaryEntry

180 Dyalog APL/W Language Reference

:Class Diary

:Field Private entries<0p[ONEW DiaryEntry
R<Add(ymdhm wot)
tAccess Public
R«[INEW DiaryEntry(ymdhm wot)
entries,«R

v

v

R«<DoingOn ymd;X

tAccess Public

X<, (tentries.When.(Year Month Day))”*.=3 1p3tymd
R«X/entries

R«Remove ymdhm;X
tAccess Public

cIf

Rev/X<«entries.When=[JNEW DateTime(6t5tymdhm)
entries<(~X)/entries

tEndIf

:Property Numbered Default Entry

v

v
v

v
v

v

R<Shape
R«pentries

R<Get arg
R«arg.Indexers>entries

Set arg
entries[arg.Indexers]«arg.NewValue

:EndProperty
tEndClass A Diary

:EndNamespace

Chapter 3 Object Oriented Programing 181

Create a new instance of Diary.
D<[JNEW DiaryStuff.Diary
Add a new entry "meeting with John at 09:00 on April 30™

D.Add (2006 4 30 9 0) 'Meeting with John'
30/04/2006 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April 30™"

D.Add(2006 4 30 10 0) 'Dentist’
30/04/2006 10:00:00 Dentist

One of the benefits of the Namespace Script is that Classes defined within it (which are
typically related) may be used independently, so we can create a stand-alone instance
of DiaryEntry; "Doctor at 11:00"—

Doc«[NEW DiaryStuff.DiaryEntry((2006 4 30 11 0) 'Doctor')
30/045;806 11:00:00 Doctor
— and then use it to replace the second Diary entry with indexing:
D[2]«Doc

and just to confirm it is there —

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30™ ?
D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John
30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment...

D.Remove 2006 4 30 11 O
1

and the complete Diary is...

1[b)
30/04/2006 09:00:00 Meeting with John

182

Dyalog APL/W Language Reference

Class Declaration Statements

This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Function Declaration Statements.

:Interface Statement

t:Interface <interface name>

QEBdInterface

An Interface is defined by a Script containing skeleton declarations of Properties and/or
Methods. The script must begin witha : Interface Statement and end with a
:EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that implement
the Interface, may not contain :Access Statements.

:Namespace Statement

:Namespace <namespace name>
:EndNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a : Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of : Namespace and
:EndNamespace statements within the Namespace script.

Classes are defined by pairs of :Class and : EndC1ass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that refer
to one another where the use of nested classes is inappropriate.

Chapter 3 Object Oriented Programing 183

:Class Statement

:Class <class name><:base class name> <,interface name...>
:Include <namespace>

;é6d01ass

A class script begins with a : C1ass statement and ends witha :EndClass
statement. The elements that comprise the : C1ass statement are as follows:

Element Description

class name Optionally, specifies the name of the Class,
which must conform to the rules governing APL
names.

base class name | Optionally specifies the name of a Class from
which this Class is derived and whose members
this Class inherits.

interface name The names of one or more Interfaces which this
Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
: Include statements. For further details, see Including Namespaces in Classes

Examples:

The following statements define a Class named Pengui n that derives from (is based
upon) a Class named Anima 1 and which supports two Interfaces named
BirdBehaviour and FishBehaviour.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
:EndClass
The following statements define a Class named Pengui n that derives from (is based

upon) a Class named Animal and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

;éﬁdCIass

184 Dyalog APL/W Language Reference

:Using Statement

:Using <NameSpace[,Assembly]>

This statement specifies a .NET namespace that is to be searched to resolve unqualified
names of .NET types referenced by expressions in the Class.

Element Description
NameSpace Specifies a .NET namespace.
Assembly Specifies the Assembly in which NameSpace is located. If the

Assembly is defined in the global assembly cache, you need only
specify its name. If not, you must specify a full or relative pathname.

If the Microsoft .Net Framework is installed, the System namespace in mscorlib.dll is
automatically loaded when Dyalog APL starts. To access this namespace, it is not
necessary to specify the name of the Assembly.

When the class is fixed, JUSING is inherited from the surrounding space. Each
: Us i ng statement appends an element to JUSING, with the exception of :Using
with no argument:

If you omit <Namespace>, this is equivalent to clearing JUSING, which means that
no .NET namespaces will be searched (unless you follow this statement with additional
: Us i ng statements, each of which will append to JUSING).

To set JUSING, to a single empty character vector, which only allows references to
fully qualified names of classes inmscorlib.d1l1, you must write:

:Using , (note the presence of the comma)
or
:Using ,mscorlib.dll

(i.e. specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

Chapter 3 Object Oriented Programing 185

:Attribute Statement

:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .Net Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .Net attribute

ConstructorArgs | Optional arguments for the Attribute constructor

Example

The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods f oo and goo within it.

:Class cl1

tusing System
tattribute SerializableAttribute
tattribute CLSCompliantAttribute 1

v foo(pl p2)
t:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute
v

V goo(pl p2)
tAccess public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

v
:EndClass a ci
When this Class is exported as a .Net Class, the attributes are saved in its metadata. For

example, Visual Studio will warn developers if they make use of a member which has
the ObsoleteAttribute.

186

Dyalog APL/W Language Reference

:Access Statement

:Access <Private|Public><Instance|Shared><Overridable>

:Access <WebMethod>

<Override>

The :Access statement is used to specify characteristics for Classes, Properties and

Methods.

Element

Description

Private|Public

Specifies whether or not the (nested) Class,
Property or Method is accessible from
outside the Class or an Instance of the Class.
The defaultis Private.

Instance|Shared

For a Field, specifies if there is a separate
value of the Field in each Instance of the
Class, or if there is only a single value that is
shared between all Instances.

For a Property or Method, specifies whether
the code associated with the Property or
Method runs in the Class or Instance..

WebMethod

Applies only to a Method and specifies that
the method is exported as a web method.
This applies only to a Class that implements
a Web Service.

Overridable

Applies only to an Instance Method and
specifies that the Method may be
overridden by a Method in a higher
Class. See below.

Override

Applies only to an Instance Method and
specifies that the Method overrides the
corresponding Overridable Method
defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding Base

Class Methods.

Chapter 3 Object Oriented Programing 187

Nested Classes

The :Access statement is also used to control the visibility of one Class that is defined
within another (a nested Class). A Nested Class may be either Private or Public.
Note that the :Access Statement must precede the definition of any Class contents..

A Pub1ic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod

Note that : Access WebMethod is equivalent to:

tAccess Public
tAttribute System.Web.Services.WebMethodAttribute

:Field Statement

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
FieldName <<« expr>

A :Field statement is a single statement whose elements are as follows:

Element Description

Private|Public Specifies whether or not the Field is accessible
from outside the Class or an Instance of the
Class. The defaultis Private.

Instance|Shared Specifies if there is a separate value of the Field
in each Instance of the Class, or if there is only a
single value that is shared between all Instances.

ReadOnly If specified, this keyword prevents the value in
the Field from being changed after initialisation.

FieldName Specifies the name of the Field (mandatory).

< expr Specifies an initial value for the Field.

188

Dyalog APL/W Language Reference

Examples:

The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so may
be accessed (set or retrieved) from outside an Instance.

:Field Public Name
The following statement defines a Field called Months.

:Field Shared ReadOnly Months<«12t([JNEW DateTimeFormatInfo)
.AbbreviatedMonthNames

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and may
not be altered after initialisation. It's initial value is calculated by an expression that
obtains the short month names that are appropriate for the current locale using the .Net
Type DateTimeFormatInfo.

Note that Fields are initialised when a Class script is fixed by the editor or by [F IX. If
the evaluation of expr causes an error (for example, a VALUE ERROR), an
appropriate message will be displayed in the Status Window and [JF I X will fail with a
DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its
:Field statement.

In the second example above, the expression will only succeed if JUSING is set to the
appropriate path, in this case System.Globalization.

Chapter 3 Object Oriented Programing 189

:Property Section

A Property is defined by a :Property ... :EndProperty sectionina Class
Script. The syntax of the :Property Statement, and its optional : Access statement is
as follows:

:Property <Simple|Numbered|Keyed> <Default> Name<,Name>...
tAccess <Private|Public><Instance|Shared>

:EndProperty
Element Description
Name Specifies the name of the Property by which

it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour
may be specified by a comma-separated list
of names.

Simple|Numbered|Keyed Specifies the type of Property (see below).
The defaultis Simple.

Default Specifies that this Property acts as the
default property for the Class when indexing
is applied directly to an Instance of the
Class.

Private|Public Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Instance|Shared Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Numbered and Keyed Properties are designed to allow APL to perform selections and
structural operations on the Property.

190

Dyalog APL/W Language Reference

Within the body of a Property Section there may be:

one or more : Access statements
a single PropertyGet function.

a single PropertySet function

a single PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.

When a Class is fixed by the Editor or by JF IX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape
functions within them. If anything is wrong, an error is generated and the Class is not

fixed.

PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

Name The name of the property. This is useful when one function is
handling several properties.

NewValue Array containing the new value for the Property or for selected
element(s) of the property as specified by Indexers.

Indexers A vector that identifies the elements of the Property that are to
be referenced or assigned.

Chapter 3 Object Oriented Programing 191

:PropertyGet Function Syntax

PropertyGet Syntax: R«<Get
R«<Get ipa

The name of the PropertyGet function must be Get, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to the
rank and shape specified by ipa.Indexers or be scalar.

If monadic, ipa is an instance of the internal class PropertyArguments

In all cases, i pa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, i pa.Indexers isundefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that
identifies a single element of the Property whose value is to be obtained. In this case, R
must be scalar.

If the Property is Keyed, ipa.Indexers is a vector containing the arrays that were
specified within the square brackets in the reference expression. Specifically,
ipa.Indexers will contain one more elements than the number of semi-colon (;)
separators.

192 Dyalog APL/W Language Reference

PropertySet Function Syntax

PropertySet Syntax: Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.
i pa is an instance of the internal class PropertyArguments.

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, i pa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that
identifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.Indexers is a vector containing the arrays that were
specified within the square brackets in the assignment expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators. If any index was elided, the corresponding element of ipa.Indexers is
ONULL. However, If the Keyed Property is being assigned in its entirety, without
square-bracket indexing, ipa.Indexers is undefined (VALUE ERROR).

Chapter 3 Object Oriented Programing 193

PropertyShape Function Syntax

PropertyShape Syntax: R«Shape
R<Shape ipa

The name of the PropertyShape function must be Shape, but is case-independent. For
example, shape, Shape, sHape and SHAPE are all valid names for the
PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.
The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class PropertyArguments. i pa.Name
contains the name of the Property being referenced and NewValue and Indexers
are undefined (VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the Property.
Each element of R specifies the length of the corresponding dimension of the Property.
Otherwise, the reference or assignment to the Property will fail with DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its dimensions.
If not, the reference or assignment to the Property will fail with RANK ERROR or
LENGTH ERROR..

194 Dyalog APL/W Language Reference

195

CHAPTER 4

Primitive Functions

Scalar Functions

There is a class of primitive functions termed SCALAR FUNCTIONS. This class is
identified in Figure 4(i) below. Scalar functions are pervasive, ie. their properties
apply at all levels of nesting. Scalar functions have the following properties:

Symbol Monadic Dyadic
+ Identity Plus (Add)
- Negative Minus (Subtract)
x Signum Times (Multiply)
+ Reciprocal Divide
| Magnitude Residue
L Floor Minimum
[Ceiling Maximum
* Exponential Power
® Natural Logarithm Logarithm
o Pi Times Circular
! Factorial Binomial
~ Not $
? Roll $
€ Type (See Enlist) $
A And
v Or
A Nand
v Nor
< Less
< Less Or Equal
= Equal
2 Greater Or Equal
> Greater
Not Equal
$ Dyadic form is not scalar

Figure 4(i) : Scalar primitive functions

196

Dyalog APL/W Language Reference

Monadic Scalar Functions

a) The function is applied independently to each simple scalar in its argument.
Example
2 (1 &)
0.5 1 0.25
b) The function produces a result with a structure identical to its argument.
c) When applied to an empty argument, the function produces an empty result.

With the exception of + and €, the type of this result depends on the function,
not on the type of the argument. By definition + and € return a result of the
same type as their arguments.

Dyadic Scalar Functions

a) The function is applied independently to corresponding pairs of simple scalars
in its arguments.

Examples
234 +123
357
2 (3 4) +1 (2 3)
3 57
(1 2) 3 +4 (56)
56 89
b) A simple scalar will be replicated to conform to the structure of the other

argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied between
the simple scalar and the items of the non-simple scalar. Replication of simple
scalars is called SCALAR EXTENSION.

Chapter 4 Primitive Functions 197

Examples
10 x 2 (3 4)

20 30 40
2 4 =2 (4 6)

1 10

c) A simple unit is treated as a scalar for scalar extension purposes. A UNIT is a
single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

Example
(1 1p5) - 1 (2 3)

L 3 2

d) The function produces a result with a structure identical to that of its
arguments (after scalar extensions).

e) If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric
type.)

Examples
1t''+10

0
11(0pc' ' (0 0))x""

0 00O

Note: The Axis operator applies to all scalar dyadic functions.

198 Dyalog APL/W Language Reference

Mixed Functions

Mixed rank functions are summarised in Figure 4(ii). For convenience, they are sub-
divided into five classes:

Structural These functions change the structure of the arguments in some
way.

Selection These functions select elements from an argument.

Selector These functions identify specific elements by a boolean map or by

an ordered set of indices.

Miscellaneous These functions transform arguments in some way, or provide
information about the arguments.

Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from that
of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of the
arguments, not necessarily independently.

Examples
'"CAT' 'DOG' 'MOUSE'1c'DOG'

3t 1 '"TWO' 3 'FOUR'
1 TWO 3

Chapter 4 Primitive Functions

199

Class Symbol | Monadic Dyadic
Structural $ Reshape
, Ravel [] Catenate []
Laminate []
5 Catenate First[]
Laminate []
¢ Reverse [] Rotate []
e Reverse First[] Rotate First[]
® Transpose Transpose
1 Mix/Disclose $
(First) []
) Split [1] $
c Enclose [] Partitioned
Enclose []
€ Enlist $
(See Type)
Selection > Disclose/Mix Pick
) $ Take []
} $ Drop []
/ Replicate []
e Replicate First[]
\ Expand []
X Expand First []
~ $ Without
(Excluding)
n Intersection
v Unique Union
Selector 1 Index Generator Index Of
€ $ Membership
A Grade Up Grade Up
' Grade Down Grade Down
? $ Deal
€ Find

[] Implies axis specification is optional

$ This function is in another class

Figure 4(ii) : Mixed Primitive Functions

200

Dyalog APL/W Language Reference

Class Symbol Monadic Dyadic
Miscellaneous p Shape $
= Depth Match
Not Match
¢ Execute Execute
3 Format Format
L Decode (Base)
T Encode
(Representation)
2| Matrix Matrix
Divide Inverse
Special - Abort
(Niladic)
- Branch
« $ Assignment
[I]« |$ Assignment
(Indexed)
(I)« Assignment
(Selective)
[] Indexing

[] Implies axis specification is optional

$ This function is in another class

Figure 4(ii) : Mixed Primitive Functions (Continued)

Chapter 4 Primitive Functions 201

Conformability

The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements

Some primitive functions may include fill elements in their result. The fill element for
an array is the enclosed type of the disclose of the array (c€>Y for array Y). The Type
function (€) replaces a numeric value with zero and a character value with *

The Disclose function (2) returns the first item of an array. If the array is empty, 2Y is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\ or
%), Replicate (/ or #), Reshape (p) and Take (1).

Examples

€1b
000O00O0

€>(13)('ABC")
000

ce>(13)('ABC")
00O

ceo>c(13)('ABC")
000

A<"ABC' (1 2 3)
A<0pA
ceoA

111

=ceoA

202

Dyalog APL/W Language Reference

Axis Specification

The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. If the primitive function is to
be applied without an axis specification, a default axis is implied, either the first or last.

Example
1 0 1/[1] 3 2p16
12
56
1 2 3+[2]2 3p10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the value
(either of which might not exist).

Example

‘NAMES',[0.5]"'="

(IO is an implicit argument of an axis specification.

Function Presentation

Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions are
described in terms of single element arguments. The rules for extension are defined at
the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the function
is implied by its syntax in the heading block.

Chapter 4 Primitive Functions 203

Abort:

->

This is a special case of the Branch function used in the niladic sense. If it occurs in a
statement it must be the only symbol in an expression or the only symbol forming an
expression in a text string to be executed by ¢. It clears the most recently suspended
statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain of
operators.

Examples
vV F
[1] ‘L]
[2] G
[3] "FL3]!
\
vV G
[1] 'G[1]"
[2] -
[3] 'G[3]"
\
F
FL1]
G[1]
OVR'VALIDATE'
V VALIDATE
[1] +(12=110JAI)p0 ¢ 'ACCOUNT NOT AUTHORISED' ¢ =~
\
VALIDATE

ACCOUNT NOT AUTHORISED

1t0AI
52

204 Dyalog APL/W Language Reference

Add: ReX+Y

Y must be numeric. X must be numeric. R is the arithmetic sum of X and Y. R is
numeric. This function is also known as Plus.
Examples

12+ 34
L 6

12 + 3,¢4 5
L 6 7

And, Lowest Common Multiple: ReXAY

Case 1: X and Y are boolean

R is boolean is determined as follows:

=00 >
OO =<
OO0 ~

Note that the ASCII caret (~) will also be interpreted as an APL And (*).

Example

0101~0011
0001

Case 2: X and Y are numeric (non-boolean)

R is the lowest common multiple of X and Y.

Example

151 27 2~351 40
1056 1 4+ 0

OCT is an implicit argument in case 2.

Chapter 4 Primitive Functions 205

Assignment: X<Y

Assignment allocates the result of the expression Y to the name or names in X.

If'Y is an array expression, X must contain one or more names which are variables,
system variables, or are undefined. Following assignment, the name(s) in X become
variable(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y.

The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples

A<2.3
A
2.3

A<13
A
12 3

More than one name may be specified in X by using vector notation. If so, Y must be a
vector or a scalar. If'Y is a scalar, its value is assigned to all names in X. If Y isa
vector, each element of Y is assigned to the corresponding name in X.

Examples

A B<«2
A

P OIO Q«'TEXT' 1 (1 2 3)
)

TEXT
010

Q
123

1

For compatibility with IBM's APL2, the list of names specified in X may be enclosed in
parentheses.
Examples

(A B C)«l 2 3
(D E)«'Hello' 'World'

206 Dyalog APL/W Language Reference

Multiple assignments are permitted. The value of Y is carried through each
assignment:

I<J<«K<«0

I,J,K
000

Function Assignment

IfY is a function expression, X must be a single name which is either undefined, or is
the name of an existing function or defined operator. X may not be the name of a
system function, or a primitive symbol.

Examples
PLUS<«+
PLUS

+
SUM<«+/
SUM

+/

MEAN<{(+/w)+pw}

Namespace Reference Assignment

If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

'"f1'0OWC'Form'
‘'ns1' [ONS "'

N«ns1
ONC'N' A name class of a scalar ref

Feft
ONC'F' A name class of a scalar ref

refs<N F vector of refs.
[ONC'refs' A nameclass of vector.

e

F2«2>orefs
ONC 'F2'

Chapter 4 Primitive Functions 207

Re-Assignment

A name that already exists may be assigned a new value if the assigment will not alter
its name class, or will change it from 2 to 9 or vice versa. The table of permitted re-
assignments is as follow.

Ref Variable Function Operator
Ref Yes Yes
Variable Yes Yes
Function Yes Yes
Operator Yes Yes

Assignment (Indexed): {R}X[I]«Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]+« is treated as the function for descriptive purposes.

Y may be any array. X may be the name of any array. I must be a valid index
specification. The shape of Y must conform with the shape (implied) of the indexed
structure defined by I. IfY is a scalar or a unit vector it will be extended to conform.
A side effect of Indexed Assignment is to change the value of the indexed elements of
X.

R is the value of Y. If the result is not explicitly assigned or used it is suppressed.
0IO0 is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment

For vector X, I is a simple integer array whose items are from the set 1 pR. Elements
of X identified by index positions I are replaced by corresponding elements of Y.
Examples

+A<15
12345

A[2 3]«10 o A
110 10 4 5

208

Dyalog APL/W Language Reference

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]«100 101 o A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples

+B<«2 3p'REDSUN'
RED
SUN

B[2;2]«'0" ¢ B
RED
SON

For higher-order array X, I is a series of simple integer arrays with adjacent arrays
separated by a single semicolon character (;). Each array selects indices from an axis
of X taken in row-major order.

Examples

C
11 12 13
14 15 16

21 22 23
24 25 26

C[1;1:3]«103 ¢ C
11 12 103
14 15 16

21 22 23
24 25 26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector 1 (pX) [K] is implied:

Cl[;1:2 3]«2 2p112 113 122 123 ¢ C
11 112 113
14 15 16

21 122 123
24 25 26

Chapter 4 Primitive Functions 209

Cl;s;]«0 o C

oo oo
oo oo
oo oo

Choose Indexed Assignment

The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples

C
11 12 13 14
21 22 23 24

Clc1l 1]«101 o C
101 12 13 14
21 22 23 24

C[(1 2) (2 3)]«102 203 ¢ C
101 102 13 14
21 22 203 24

CL2 2p(1 3)(2 4)(2 1)(1 4)]«2 2p103 204 201 104oC

101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10
S[c10]«c'VECTOR' ¢ S
VECTOR
S[c10]«5 o S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (1) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24
1pC
1 2 3
1 2 3

N -
+ F

1 1 1
2 2 2

210 Dyalog APL/W Language Reference

C[1 181pCl«1 2 o C
1 12 13 14
21 2 23 24

C[2 "1t1pCJ«99 o C
1 12 13 99
21 2 23 99

Reach Indexed Assignment

The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D«(2 3p16)(2 2p'SMITH' 'JONES' 'SAM' 'BILL')
D

123 SMITH JONES
4+ 56 SAM BILL

=J«c2 (1 2)
-3

D[J]«c'WILLIAMS' ¢ D

123 SMITH WILLIAMS

4 56 SAM BILL
DL(1 (1 1))(2 (2 2) 1)]«10 'W' o D

10 2 3 SMITH WILLIAMS

4+ 56 SAM WILL

E
GREEN YELLOW RED

E[c2 1]«'M"' o E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

€2 1 «» c(c2),(c1)

Chapter 4 Primitive Functions 21

Assignment (Selective): (EXP X)<Y

X is the name of a variable in the workspace. EXP is an expression that selects
elements of X. Y is an array expression. The result of the expression Y is allocated to
the elements of X selected by EXP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [].

Take

Drop

Ravel

Reverse, Rotate

Reshape

Disclose, Pick

Transpose (Monadic and Dyadic)
Replicate

Expand

Index

- =

B~ \N\©2 U0 6«

Note that Mix and Split (monadic t and +) may not be used in the selection expression.

Examples
A<'HELLO'
((Ae'AEIOU')/A)«"x'
A

HxLLx*

1«3 L4p112
(5t,2)+«0
z

0 0 0 O

0O 6 7 8

9 10 11 12
MAT<3 3p19

(1 18MAT)<0
MAT

~N+F O
0ON
oo w

212 Dyalog APL/W Language Reference

Binomial:

ReX1Y

Y may be any number other than a negative integer. X may be any number other than a
negative integer. R is numeric. An element of R is integer if corresponding elements
of X and Y are integers. Binomial is defined in terms of the function Factorial for
positive integer arguments:

XY <> (lY)+(!X)x!Y-X

For other arguments, results are derived smoothly from the Beta function:
Beta(X,Y) <> +Yx(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y things.

Example

1 1.2 1.4 1.6 1.8 2!5
5 6.105689248 7.219424686 8.281104786 9.227916704 10

Chapter 4 Primitive Functions 213

Branch:

>Y

Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal sequence
of execution of expressions or to resume execution after a statement has been
interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Entered in
Statement in a Immediate
Defined Function Execution Mode
Continue with the Restart execution at
+LINE specific line the specific line of

the most recently
suspended function

Continue with the No effect
+10 next expression

In a defined function, if Y is non-empty then the first element in Y specifies a statement
line in the defined function to be executed next. If the line does not exist, then
execution of the function is terminated. For this purpose, line 0 does not exist. (Note
that statement line numbers are independent of the index origin (JI0).

IfY is empty, the branch function has no effect. The next expression is executed on the
same line, if any, or on the next line if not. If there is no following line, the function is

terminated.

The : GoTo statement may be used in place of Branch in a defined function.

214 Dyalog APL/W Language Reference

Example

v TEST
[1] 1
[2] >l
[3] 3
[4] 4

v

TEST
1
y

In general it is better to branch to a LABEL than to a line number. A label occurs in a
statement followed by a colon and is assigned the value of the statement line number
when the function is defined.

Example
vV TEST
[1] 1
[2] -FOUR
[3] 3
[4] FOUR: 4
v
TEST
1
y

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified:

Chapter 4 Primitive Functions

215

Branch Expression

Comment

-TEST/L1

~TESTpL1
S~TESTHL1
~L1p=TEST
~L1[1TEST
~L1x1TEST
~(L1,L2,L3)[N]

-(T1,72,T3)/L1,L2,L3

>NoL1,L2,L3

Branches to label L1 if TEST
results in 1 but not if TEST
results in 0.

Similar to above.

Similar to above.

Similar to above.

Similar to above but only if
0I10«»1

Similar to above but only if
0I0«~>1

Unconditional branch to a
selected label.

Branches to the first selected
label dependent on tests
T1,T2,T3. If all tests result
in 0, there is no branch.
Unconditional branch to the
first label after rotation.

A branch expression may occur within a statement including ¢ separators:

[5] >NEXTp~TEST ¢ A«A+1 o -END

[6] NEXT:

In this example, the expressions ' A«A+1 "' and '>END' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

216 Dyalog APL/W Language Reference

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. If the state
indicator is empty, or if the argument Y is the empty vector, the branch expression has
no effect. If a statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

Example
vV F
[1] 1
[2] 2
[3] 3
(4] v
2 (STOP'F'
F
1
FL2]
)SI
FL2]x
-2
2
3

The system constant [JL C returns a vector of the line numbers of statement lines in the
state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

~{LC

Chapter 4 Primitive Functions 217

Catenate/Laminate: ReX,[K]Y

Y may be any array. X may be any array. The axis specification is optional. If
specified, K must be a numeric scalar or unit vector which may have a fractional value.
If not specified, the last axis is implied.

The form R«X3Y may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:
1. With an integer axis specification, or implied axis specification.

2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification

The arrays X and Y are joined along the required axis to form array R. A scalar or unit
vector is extended to the shape of the other argument except that the required axis is
restricted to a unit dimension. X and Y must have the same shape (after extension)
except along the required axis, or one of the arguments may have rank one less than the
other, provided that their shapes conform to the prior rule after augmenting the array of
lower rank to have a unit dimension along the required axis.

The rank of R is the greater of the ranks of the arguments, but not less than 1.

Examples

"FUR', 'LONG'
FURLONG

1,2
12

(2 4p'THISWEEK');'="
THIS
WEEK

S,[1]+#S«2 3p16
123
4 5 6
579

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length. Otherwise,
the data type of R will be that of X.

218 Dyalog APL/W Language Reference

Lamination with Fractional Axis Specification

The arrays X and Y are joined along a new axis created before the [Kth axis. The new
axis has a length of 2. K must exceed (JI0 (the index origin) minus 1, and K must be
less than [JI0 plus the greater of the ranks of X and Y. A scalar or unit vector argument
is extended to the shape of the other argument. Otherwise X and Y must have the same
shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples

"HEADING',[0.5]"'-"
HEADING

"NIGHT',[1.5]"'x"'
N *
Ix
Gx
H
Tx*

010+0

"HEADING,[70.5]"'-"
HEADING

Catenate First: Re«Xs[KJ]Y

The form R«<X5Y implies catenation along the first axis whereas the form R«<X,Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Chapter 4 Primitive Functions 219

Ceiling:

R«[Y

Y must be numeric. R is the least integer greater than or equal to Y.

Example

[T2.3 0.1 100 3.3
2 1 100 4

0CT is an implied argument of Ceiling.

Circular:

R«XoY

Y must be numeric. X must be an integer in the range ~7 < X < 7. R is numeric.

X determines which of a family of trigonometric functions to apply to Y, from the
following table:

Range Domain (-X) oY X X oY Range
O<Rz1 (1Y)<1 (1-Y%x2)*.5 0 (1-Y%x2)*.5 | O<Rz<1
(-0.5)<R<0.5 | (|Y)=1 Arcsin Y 1 Sine Y (IR)<1
O<R<o1 (1Y)<1 Arccos Y 2 | Cosine Y (|R)<1
(_R)<o0.5 Arctan Y 3 | Tangent Y
R20 (1Y)21 (T1+Y*x2)*x.5 | 4 (1+Yx2)*.5

Arcsinh Y 5 Sinh Y
R20 Y21 Arccosh Y 6 Cosh Y R>1
(1Y)<1 Arctanh Y 7 Tanh Y (|R)<1

Examples

0 "1 o1
0 1.570796327

1o(PI«01)+2 3 4
1 0.8660254038 0.7071067812

20PI+3

220 Dyalog APL/W Language Reference

Deal:

R«X?Y

Y must be a simple scalar or unit vector containing a non-negative integer. X must be a
simple scalar or unit vector containing a non-negative integer and X<Y.

R is an integer unit vector obtained by making X random selections from 1Y without
repetition.
Examples

13752
7 40 24 28 12 3 36 49 20 44 2 35 1

13752
20 4 22 36 31 49 45 28 5 35 37 48 4O

0IO0 and ORL are implicit arguments of Deal. A side effect of Deal is to change the
value of (JRL.

Decode:

ReX1Y

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the evaluation of Y in the number system with radix X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or unit vector is extended to a vector of the required length.
If the last axis of X or the first axis of Y has a length of 1, the array is extended along
that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the shape
of Y less the first dimension. That is:

pR <> (T1ipX),14pY

For vector arguments, each element of X defines the ratio between the units for
corresponding pairs of elements in Y. The first element of X has no effect on the result.

This function is also known as Base Value.

Chapter 4 Primitive Functions 221

Examples

60 6013 13
193

0 6013 13
193

6013 13
193

211 010
10

For higher order array arguments, each of the vectors along the last axis of X is taken as
the radix vector for each of the vectors along the first axis of Y.

Examples

o

o

o
P, OX
[N
- O -
O K-
- -

>

FWN B~
FWN -~
FWN =~

ALM

2 1 2 2 3
3 4 5 6 17
4L 9 10 12 13
5 16 17 20 21

OO OO
-
FWN -~

Scalar extension may be applied:

21M
01234567

Extension along a unit axis may be applied:

+A«2 1p2 10
2
10
ALM
01 2 3 4 5 6 7
01 10 11 100 101 110 111

222 Dyalog APL/W Language Reference

Depth: (0OML) Re=Y

Y may be any array. R is a simple integer scalar which indicates the number of levels
of nesting for the simple scalar item in the array with the greatest number of levels of
nesting. A simple scalar has a depth of 0. A simple array has a depth of 1. An array
containing non-simple elements has a depth whose magnitude is greater than 1. The
array has uniform depth if all simple scalars in the array have the same depth.

IfML <2, a negative value of R indicates non-uniform depth.

Examples

=1
0

EIAI
0

='ABC'?
1

Ei IAI
1

OML<0

=A«<(1 2)(3 (4 5))
-3

—a
1 72

Z
00 01

OML<2

=A
3

Za
12

Z
00 01

Chapter 4 Primitive Functions 223

Disclose:

(OML) R«dY or R«1tY

The symbol chosen to represent Disclose depends on the current Migration Level.

If OML <2, Disclose is represented by the symbol: .
If OML>2, Disclose is represented by the symbol: t.

Y may be any array. R is an array. If Y is non-empty, R is the value of the first item of
Y taken in ravel order. IfY is empty, R is the prototype of Y.

Disclose is the inverse of enclose. The identity R«>><R holds for all R. Disclose is
also referred to as First.

Examples
o1
1
22 4 6
2
>'MONDAY"' 'TUESDAY'
MONDAY
5(1 (2 3)) (4 (5 6))
1 23
210
0
] I=DII
1
>14cl,c2 3

0 0O

224 Dyalog APL/W Language Reference

Divide:

R«X+Y

Y must be a numeric array. X must be a numeric array. R is the numeric array resulting
from X divided by Y. System variable JDIV is an implicit argument of Divide.

IfJDIV=0 and Y=0 then if X=0, the result of X+Y is 1; if X#0 then X+Y is a DOMAIN
ERROR.

If(0DIV=1 and Y=0, the result of X+Y is O for all values of X.

Examples

2 0 54 0 2
0.5 1 2.5

ODIV«1
2 05:4 00
0.5 00

Chapter 4 Primitive Functions 225

Drop:

ReX{Y

Y may be any array. X must be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-element vector. If Y is a scalar, it is treated as an array whose shape
is (pX)p1l . After any scalar extensions, pX must equal ppY (the shape of X must
equal the rank of Y).

R is an array with the same rank as Y but with elements removed from the vectors
along each of the axes of Y. For the Ith axis:

1. if X[I] is positive, all but the first X[I] elements of the vectors result.
2. if X[I] is negative, all but the last X[I] elements of the vectors result.

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
44 'OVERBOARD'
BOARD
~54'OVERBOARD'
OVER
p104'OVERBOARD'
0
M
ONE
FAT
FLY
0 "2iM
0
F
F
2 T1iM

ON

226 Dyalog APL/W Language Reference

Drop with Axes: ReXV[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K isa
vector of zero or more axes of Y.

R is an array of the elements of Y with the first or last X[i] elements removed. Elements
are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:

ppR > ppY

The size of each axis of R is determined by the corresponding element of X:

(pPR)[,K] <> Ol (pY)[,K]-1I,X

Examples
O«M<2 3 Wp12k

1
5
9

13
17
21

19
23

2
6
10

14

18
22

10

18
22

20
24

3 4
7 8
11 12

15 16
19 20
23 24
14[2]IM
7 8
11 12

19 20
23 24

24[3IM

2 14[3 2]M

Chapter 4 Primitive Functions

227

Enclose:

RecY

Y may be any array. R is a scalar array whose item is the array Y. If Y is a simple

scalar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude is
one greater than the magnitude of the depth of Y.

Examples
c1

€1 2 3
123

cl,c'CAT'
1 CAT

c

kp18

gl -
o N
~Nw

c10
cc10

cci0
10

228 Dyalog APL/W Language Reference

Enclose with Axes: Re«c[K]Y

Y may be any array. K is a vector of zero or more axes of Y. R is an array of the
elements of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

pR «> (pY)[(1ppR)~K]
The shape of each element of R is the shape of the K'th axes of Y:

poR <= (pY)[,K]

Examples
DISPLAY A«2 3 4p'DUCKSWANBIRDWORMCAKESEED'

b oammmm s e,
| |DUCK| [SWAN| |BIRD|
I l____l |____| |____|
| IWORM| |CAKE| |SEED]
I 1 1) 1 1)

e ———
IDUCK| +WORM| |
| SWAN| |CAKE| |
|[BIRD| |SEED]| |

1 1 I

| ¥DUCK| +SWAN| BIRD]|
| |WORM| |CAKE| |SEED]|
| 1 1 1 1

Chapter 4 Primitive Functions 229

Encode:

ReXTY

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the representation of Y in the number system defined by X.

The shape of R is (pX), pY (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. If Y is greater than can be
expressed in the number system, the result is equal to the representation of the residue

(x/X) Y. Ifthe first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples

1075 15 125
555

0 1075 15 125
01 12
55 5

230 Dyalog APL/W Language Reference

If X is a higher order array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A

NNNNNNDNN
0000000 OOOOoO
(e Ne NoloNoNoNoNe]

- -

AT75

PP, OFRP,LOOO
WP, P, OO0OO0O0O0
R FOOOOOO

[N

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples

0 171.25 10.5
1 10
0.25 0.5

4+ 13713752
23201

+ O
—-
N
-
~
o
w
-
ow

Chapter 4 Primitive Functions 231

Enlist:

(OML21) R«eY

Migration level must be such that [JML >1 (otherwise see function Type).

Y may be any array, R is a simple vector created from all the elements of Y in ravel
order.

Examples
OML«1 A Migration level 1
MAT«2 2p'MISS' 'IS' 'SIP' 'PI' o MAT
MISS IS
SIP PI
eMAT
MISSISSIPPI

Mel (2 2p2 3 4 5) (6(7 8))
M

1 6 78

2 3
4L 5
eM

12345678

Equal:

R«X=Y

Y may be any array. X may be any array. R is boolean. [JCT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other. That is, X is considered equal to Y if (| X-Y) is not greater than
OcT=<CIX)I1y .

232 Dyalog APL/W Language Reference

Examples
3=3.1 3 72 73

0100
'CAT'='FAT'
'CAT'=1 2 3

'CAT'='C' 2 3

OCT<«1E~10
1=1.000000000001

1=1.0000001

Excluding: R«X~Y

X must be a scalar or vector. R is a vector of the elements of X excluding those
elements which occur in Y taken in the order in which they occur in X.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.
OCT is an implicit argument of Excluding.
This function is also known as Without.

Examples

"HELLO'~"'GOODBYE"
HLL

‘MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'
MONDAY WEDNESDAY

5 10 15~110
15

For performance information, see Search Functions and Hash Tables in Chapter 2.

Chapter 4 Primitive Functions 233

Execute (Monadic): R<eY

Y must be a simple character scalar or vector. IfY is an empty vector, it is treated as an
empty character vector. Y is taken to be an APL statement to be executed. R is the
result of the last-executed expression. If the expression has no value, then ¢Y has no
value. If'Y is an empty vector or a vector containing only blanks, then ¢Y has no value.

If Y contains a branch expression which evaluates to a non-empty result, R does not
yield a result. Instead, the branch is effected in the environment from which the
Execute was invoked.

Examples
0'2+42"
4
h=¢'2+2'
1
A
123
4 5 6
¢'A!
123
4 5 6
¢'A<2|T140TS © -0p=A o A'
0
A
0

Execute (Dyadic): R«XeY

Y must be a simple character scalar or vector. IfY is an empty vector, it is treated as an
empty character vector. X must be a namespace reference or a simple character scalar
or vector representing the name of a namespace. Y is then taken to be an APL
statement to be executed in namespace X. R is the result of the last-executed
expression. If the expression has no value, then X¢Y has no value.

Example
OSse ¢ 'ONL 9'

234 Dyalog APL/W Language Reference

Expand:

R<X\[K]Y

Y may be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, K must be a simple integer scalar or unit vector. The value of K
must be an axis of Y. If absent, the last axis of Y is implied. The form R<XXY implies
the first axis. IfY is a scalar, it is treated as a one-clement vector.

The number of positive elements in X must be the length of Kth (or implied) axis of Y.

R is composed from the sub-arrays along the Kth axis of Y. If X[I] (an element of X)
is the Jth positive element in X, then the Jth sub-array along the Kth axis of Y is
replicated X[I] times. If X[I] is negative, then a sub-array of fill elements of Y
(ce>Y) isreplicated | X[I] times and inserted in relative order along the Kth axis of
the result. If X[I] is zero, it is treated as the value ~1. The shape of R is the shape of
Y except that the length of the Kth axisis +/1[| X.

Examples
0\10

1 72 3 "4 5\'A'
A AAA AAAAA

+
anN
o w

T2 2 0 1\M
2 03
506

-
o o
o o
ON =

1 0 1x\M

o
gonN
o

1 0 1\[1IM

o
gonN
oo w

1 72 1\(1 2)(3 4 5)
12 00 00 345

Chapter 4 Primitive Functions 235

Expand First: R<XXY

The form R«XXY implies expansion along the first axis whereas the form R«X\Y
implies expansion along the last axis (columns). See Expand above.

Exponential: RexY
Y must be numeric. R is numeric and is the Yth power of e, the base of natural
logarithms.

Example
x1 0

2.718281828 1

Factorial: R«1lY

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, 1Y is
equivalent to the gamma function of Y+1.

Examples

112345
126 24 120

171.5 0 1.5 3.3
~3.544907702 1 1.329340388 8.85534336

236 Dyalog APL/W Language Reference

Find: R<XeY

X and Y may be any arrays. R is a simple boolean array the same shape as Y which
identifies occurrences of X within Y

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

If the rank of X is larger than the rank of Y, no occurrences of X are found in Y.

OCT and 0I0 are implicit arguments to Find.

Examples

"AN'€e'BANANA'
010100

"ANA '€ 'BANANA'
010100

"BIRDS' 'NEST'e'BIRDS' 'NEST' 'SOUP'
100

MAT
IS YOU IS
OR IS YOU
IS'NT

X

H
oooC OO O>

k™ L
[eoNoNe]
oOOoOOo
OO -
OOoOOoOW!m
—
OO

[eNeNeld O O O|m
®)

O O O|m
X

OO O> oOoOoOo
—

o

o

o
OO -
oo oWwm

Chapter 4 Primitive Functions 237

First: (OML) R«dY or R«1tY

See function Disclose.

Floor: RelY

Y must be numeric. R is the largest integer value less than or equal to Y.

Examples
[72.3 0.1 100 3.3
~3 0 100 3

0.5 + 0.4 0.5 0.6
011

0CT is an implicit argument of Floor.

Format (Monadic): R«3Y

Y may be any array. R is a simple character array which will display identically to the
display produced by Y. The result is independent of JPW. If Y is a simple character
array, then R is Y.

Example
+B<«sA«2 6p'HELLO PEOPLE'
HELLO
PEOPLE
B = A
1

If'Y is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable (JPP. [JPP is ignored when formatting integers.

238 Dyalog APL/W Language Reference

Examples
OPP<«5
pC«310
0
pC+310
2
C
10
pC«312.34
5
C
12.34
5123456789
123456789
$123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to
represent with PP significant digits or if the number requires more than five leading
zeroes after the decimal point.

Chapter 4 Primitive Functions 239

Examples

5123456.7
1.2346E5

50.0000001234
1.234E77

If'Y is a simple numeric vector, then R is a character vector in which each element of Y
is independently formatted with a single separating space between formatted elements.

Example

pC+3~123456 1 22.5 ~0.000000667 5.00001
27

C
“1.2346E5 1 22.5 T6.67E77 5

If Y is a simple numeric array rank higher than one, R is a character array with the same
shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a) the decimal points for floating point or scaled formats are aligned.

b) the E characters for scaled formats are aligned, with trailing zeros added to the
mantissae if necessary.

c) integer formats are aligned to the left of the decimal point column, if any, or
right-adjusted in the field otherwise.

d) each formatted column is separated from its neighbours by a single blank
column.

e) the exponent values in scaled formats are left-adjusted to remove any blanks.

240

Dyalog APL/W Language Reference

Examples
C«22 70.000000123 2.34

pC«32 2 3pC
2 2 29
C
22 ~1.2300E77 2.3400EO
“212 1.2346E5 6.0000EO
0 2.2000E1 ~1.2300E77
2.34% 72.1200E2 1.2346E5

If Y is non-simple, and all items of Y at any depth are scalars or vectors, then R is a

vector.

Examples
B«sA«'ABC' 100 (1 2 (3

pA

A

©
(o7}

26

1]
(o]

>

ABC 100 1 2 3 45 10

B
ABC 100 1 2 3 4 5 10

~212 123456 6.00002 O

4+ 5)) 10

By replacing spaces with 2, it is clearer to see how the result of 3 is formed:

AABCAAL00ANLA2AAZARABAAALQ

If Y is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Chapter 4 Primitive Functions 241

Example
D«3C«<l 'AB' (2 2pil+i14) (2 2 3p'CDEFGHIJKLMN')

C
1 AB 2 3 CDE
4L 5 FGH
IJK
LMN
pC
4
=C
-2
D
1 AB 2 3 CDE
4L 5 FGH
IJK
LMN
pD
5 16
=D
1

By replacing spaces with 4, it is clearer to see how the result of ¥ is formed:

1AI\ABAI\2/\3AACDEA
/\AI\A/\AI\L}/\SI\AFGHA
AAAANANAAANANAAANNANAAANAN
/\A/\A/\A/\A/\A/\AIJKA
/\A/\A/\A/\A/\A/\ALMNA

OPP is an implicit argument of Monadic Format.

242

Dyalog APL/W Language Reference

Format (Dyadic): R«XsY

Y must be a simple numeric array. X must be a simple integer scalar or vector. R is a
character array displaying the array Y according to the specification X. R has rank
1[ppY and "14pRis “14pY.

Conformability requires that if X has more than two elements, then pX must be
2x711tpY. If X contains one element, it is extended to (2x~14pY)p0, X. If X
contains 2 elements, it is extended to (2x~1tpY)pX.

X specifies two numbers (possibly after extension) for each column in Y. For this
purpose, scalar Y is treated as a one-element vector. Each pair of numbers in X

identifies a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
503 2 3pib
1 2 3
L4 5 6

4 0s1.1 2 74 2.547
1 2 74 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.
Example
b 1s1.1 2 "4 2.547
1.1 2.074.0 2.5

If P is negative, scaled format is used with | P digits in the mantissa.

Example

7 “3%5 15 155 1555
5.00E0 1.50E1 1.55E2 1.56E3

If W is 0 or absent, then the width of the corresponding columns of R are determined by
the maximum width required by any element in the corresponding columns of Y, plus
one separating space.

Chapter 4 Primitive Functions 243

Example

3%2 3p10 15.2346 ~17.1 2 3 4
10.000 15.235 717.100
2.000 3.000 4.000

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example

306 23 3 2p10.1 15 1001 22.357 101 1110.1
10 15.00
xxx 22.36

101 *x*x*xxx%

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_".
Example

2632x100
1267650600228229

p2632%100
59

0 2033
0.33333333333333

0 T203%+3
3.333333333333333____E™1
The shape of R is the same as the shape of Y except that the last dimension of Y is the
sum of the field widths specified in X or deduced by the function. If'Y is a scalar, the
shape of R is the field width.

PS5 2 7 2 3 Lpi24
2 3 20

244 Dyalog APL/W Language Reference

Grade Down (Monadic): R«YY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 11t pY that places the sub-arrays of Y along
the first axis in descending order. The indices of any set of identical sub-arrays in Y
occur in R in ascending order.

IfY is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to the
first element and least weight being given to the last element.

Example
M
253 2
3 411
2545
2532
2534
M
23514
M[YM;]
3 411
2545
2534
2532
2532

IfY is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters in
OAV (Classic Edition).

0I0 is an implicit argument of Grade Down.

Chapter 4 Primitive Functions 245

Note that character arrays sort differently in the Unicode and Classic Editions.

Example
M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
¥M ¥M
2 314 3142
ML ¥M;] M[YM;]
porridge Porridge
Porridge Goldilocks
Goldilocks 3 bears
3 bears porridge

Grade Down (Dyadic): R«XVY

Y must be a simple character array of rank greater than 0. X must be a simple character
array of rank 1 or greater. R is a simple integer vector of shape 11pY containing the
permutation of 111 pY that places the sub-arrays of Y along the first axis in descending
order according to the collation sequence X. The indices of any set of identical sub-
arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:
XYY <> yXiY

A left argument of rank greater than 1 allows successive resolution of duplicate
orderings in the following way.

Starting with the last axis:
e The characters in the right argument are located along the current axis of the left
argument. The position of the first occurrence gives the ordering value of the

character.

e Ifa character occurs more than once in the left argument its lowest position along
the current axis is used.

246

Dyalog APL/W Language Reference

If a character of the right argument does not occur in the left argument, the ordering
value is one more than the maximum index of the current axis - as with dyadic iota.

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc ab
ABA ac

Aa

Ac

Along last axis:

Character: Value: Ordering:

ab 12 3

ac 13 =1 = duplicate ordering with
Aa 11 4

Ac 13 =1 = respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:

ac
Ac

11 2
2 1 1

So the final row ordering is:

ab
ac
Aa
Ac

~FEFNDW

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

Ac
ac
ab
Aa

FWN -

Chapter 4 Primitive Functions

247

Examples

pS1
2 27

S1
ABCDEF GHIJKLMNOPQRSTUVWXYZ
AAACEEEIIIIDPOOOOUUUYPE1806

52 4 A~ N Aoe\ /7 Ao N 2 A~N 2 A2
ABCDEFGHIJKLMNOPQRSTUVWXYZAAAGEEEIIIIPOOOOUUUYPai300

e ~ §3 A A .o AY pd A LX) N pd ~ ~ N 4 A 7

AABACADGEEFEGEHIIIJIKILDMONOOOPOQURUSUTYUPVAWIX3YOZo

SL* A~ N Aose N\ /Z Ao N2 A~MN 7 A2
ABCDEFGHIJKLMNOPQRSTUVWXYZAAAGEEEIIIIDOOOOUUUYPEi58066
AAACEEEIIIIDOOOOUUUYPEi18506ABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1¥X;] X[S2¥X;] X[S3¥X;] X[Su4¥X;]
FIROT TAPE UAT TAPE TAPE
TAP TAP EIRST TAP TAP
RATE RATE TAPE UAT RATE
FIRST UAT TAP RATE UAT
FIRST RAT RATE RAT RAT
UAT MAT RAT MAT MAT
EIRST EIRST MAT EIRST FIROT
TAPE FIRST FIRST FIRST FIRST
MAT FIROT FIROT FIROT FIRST
RAT FIRST FIRST FIRST EIRST

248 Dyalog APL/W Language Reference

More Examples
(2 2p'ABBA') A 'AB'[?5 2p2] A A AND B ARE EQUIVALENT
12345
DISPLAY A«2 1u4p' abcdegikImnrt ABCDEGIKLMNRT'

{ abcdegikimnrt]
| ABCDEGIKLMNRT|

V<'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,<'Abelian' 'black' 'blackball' 'black belt'
V,«'blacking' 'Black Mass'

DISPLAY M<«tVv

VAb |

| AB I

|aba |

| ABA |

|abaca |

|abecedarian|

|Abelian |

Iblack |

|Iblackball |

Iblack belt |

Iblacking |

|Black Mass |

DISPLAY'™M (M[(,A)AM:;]1) (ML(,RA)AM:;]1) (M[AAM;])

|-> __________ . --) __________ . c-> __________ . .-> __________ .
+Ab | Vaba | ‘aba | {ADb

| AB | labaca | |abaca | |AB

| aba | |abecedarian| |abecedarian| |aba

| ABA | Iblack | |Ab | |ABA

| abaca | |black belt | |Abelian | |abaca
|abecedarian| |blackball | |AB | |abecedarian]|
| Abelian | Iblacking | |ABA | |Abelian
Iblack | |Ab | Iblack | Iblack
Iblackball | | Abelian | Iblack belt | |black belt |
Iblack belt | |AB | |blackball | |Black Mass |
Iblacking | |ABA | Iblacking | |blackball
IBlack Mass | |[Black Mass | [Black Mass | |[blacking |

0IO0 is an implicit argument of Grade Down.

Chapter 4 Primitive Functions 249

Grade Up (Monadic): R«AY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 11t pY that places the sub-arrays along the first
axis in ascending order.

If' Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to the
first element and least weight being given to the last element.

Examples

422.5 1 15 3 74
524 31

M

~N o

N
N w
+ o,

AM
321

If'Y is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters in

OAV (Classic Edition).

(I0 is an implicit argument of Grade Up

250 Dyalog APL/W Language Reference

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
AM AM
4 1 3 2 2413
ML AM;] MLAM;]
3 bears porridge
Goldilocks 3 bears
Porridge Goldilocks
porridge Porridge

Grade Up (Dyadic): R<XAY

Y must be a simple character array of rank greater than 0. X must be a simple character
array of rank 1 or greater. R is a simple integer vector being the permutation of 111 pY
that places the sub-arrays of Y along the first axis in ascending order according to the
collation sequence X.

If X is a vector, the following identity holds:
XAY <> AX1Y

If X is a higher order array, each axis of X represents a grading attribute in decreasing
order of importance. If a character is repeated in X, it is treated as though it were
located at the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

Refer to dyadic Grade Down for an illustrative example of these principles.

Chapter 4 Primitive Functions 251

Greater: ReX>Y

Y must be numeric. X must be numeric. R is boolean. R is 1 if X is greater than Y and
X=Y is 0. Otherwise R is 0.

OCT is an implicit argument of Greater.

Examples
12345>2
00111
OCT«1E~10

1 1.00000000001 1.000000001 > 1
001

Greater Or Equal: ReX2Y

Y must be numeric. X must be numeric. R is boolean. R is 1 if X is greater than Y or
X=Y. Otherwise R is 0.

OCT is an implicit argument of Greater Or Equal.

Examples

12345 >3
00111

OCT«1E~10

1>1
1

1>1.00000000001

1>1.00000001

252 Dyalog APL/W Language Reference

Identity

Re+Y

Y is any array. R is the same array unchanged. Identity may be used to generate a
printed result after an assignment or from a function with an otherwise suppressed
result.

Examples

+A<15
12345

+JEX'A’

Index:

R«{X}DY

Dyadic case

X must be a scalar or vector of depth <2 of integers each 2[JI0. Y may be any array. In
general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ... 0%V)=Y[I;J;...]
The length of left argument X must be equal to the rank of right argument Y.
Note that in common with square-bracket indexing, items of the left argument X may

be of any rank and that the shape of the result is the concatenation of the shapes of the
items of the left argument:

(pXDY) = t,/p"X
Index is sometimes referred to as squad indexing.

Note that index may be used with selective specification.
0I0 is an implicit argument of index.

Chapter 4 Primitive Functions 253

Examples
010«1
VEC«111 222 333 Luh
3[JVEC
333
(et 3)[VEC
L4l 333
(c2 3p3 1 4 1 2 3)[JVEC
333 111 4hy
111 222 333
0«MAT«10L"13 4
11 12 13 14
21 22 23 24
31 32 33 34
2 1[IMAT
21
3(2 1)[MAT
32 31
(2 3)1[MAT
21 31
(2 3)(,1)0MAT
21
31
p(2 1p1)(3 4p2)[MAT
2134
p8 O[IMAT
00

(3(2 1)[IMAT)<«0 © MAT A Selective assignment.
11 12 13 14
21 22 23 24
0O 0 33 34

Monadic case

IfY is an array, Y is returned.

If Y is a ref to an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if Item is the default property of
MyClass, and imc is an Instance of MyC1ass, then by definition:

imc.Items=[imc

Version 11.0 issues a NONCE ERROR if the Default Property is Keyed, because in this
case APL has no way to determine the list of all the elements. A future version will
probably introduce a way for a class to define an ordered "key set" for a Keyed
property, at which point monadic squad will be extended to return the corresponding
elements.

254

Dyalog APL/W Language Reference

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic p, t, ¥,) as opposed to functions that
operate on the values of the index set (functions such as +, [, ,p""), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to the
PropertyGet and PropertySet functions is the same as the set of functions that applies to
selective specification.

If for example, CompF i 1e is an Instance of a Class with a Default Numbered
Property, the expression:

11¢[ICompFile

would only call the PropertyGet function (for CompF i 1e) once, to get the value of the
last element.

Note that similarly, the expression

10000p[JCompFile
would call the PropertyGet function 10000 times, on repeated indices if CompF i le
has less than 10000 elements. The deferral of access function calls is intended to be an

optimisation, but can have the opposite effect. You can avoid unnecessary repetitive
calls by assigning the result of [] to a temporary variable.

Index with Axes: R«{X}OL[K]Y

X must be a scalar or vector of depth <2, of integers each 2[JI0. Y may be any array. K
is a simple scalar of vector specifying axes of Y. The length of K must be the same as
the length of X:

(p,X) = p,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J0013]Y <« Y[I;;J]

Note that index with axis may be used with selective specification. [JI0 is an implicit
argument of index with axis..

Chapter 4 Primitive Functions 255

Examples
010«1

O«CUBE«10L712 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2[J[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2[J[3]CUBE
112 122 132
212 222 232

CUBE[;3;2] = 20[3]CUBE

(1 3)40[2 3]CUBE
114 134
214 234

CUBE[;1 3;:;4] = (1 3)4[J[2 3]CUBE

(2(1 3)0[1 3]JCUBE)«0 ¢ CUBE A Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234

256 Dyalog APL/W Language Reference

Index Generator: Re1Y

Y must be a simple scalar or vector array of non-negative numbers. R is a numeric array
composed of the set of all possible coordinates of an array of shape Y. The shape of R
is Y and each element of R occurs in its self-indexing position in R. In particular, the
following identity holds:

1Y <> (1Y)[tY]

0I0 is an implicit argument of Index Generator. This function is also known as

Interval.
Examples
010
1
p10
0
15
12345
12 3
11 12 13
21 22 23
+A<2 4p'MAINEXIT'
MAIN
EXIT
Al 1pAl
MAIN
EXIT
(10«0
15
012 34
12 3
00 01 02
10 11 12
Al 1pAl
MAIN

EXIT

Chapter 4 Primitive Functions 257

Index Of:

ReX1Y

Y may be any array. X may be any vector. R is a simple integer array with the same
shape as Y identifying where elements of Y are first found in X. If an element of Y
cannot be found in X, then the corresponding element of R will be JI0+pX.

Elements of X and Y are considered the same if XZY returns 1 for those elements.
0I0 and [CT are implicit arguments of Index Of.

Examples
010«1

2 431 411 23 45
Y1326

"CAT' 'DOG' 'MOUSE':1'DOG' 'BIRD'
2 4

For performance information, see Search Functions and Hash Tables in Chapter 2.

Indexing:

ReX[Y]

X may be any array. Y must be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

Bracket Indexing does not follow the normal syntax of a dyadic function.
0I0 is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

258

Dyalog APL/W Language Reference

Simple Indexing

For vector X, Y is a simple integer array composed of items from the set 1 pX.

R consists of elements selected according to index positions in Y. R has the same shape
as Y.

Examples
A<10 20 30 40 50

A[2 3p1 11 2 2 2]
10 10 10
20 20 20

A[3]
30

‘ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples

+M<2 Lp10x18
10 20 30 40
50 60 70 80

M[2;3]
70

For higher order array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples

+A<2 3 Lp10x124
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

Al1:151]
10

Chapter 4 Primitive Functions 259

A[2:3 2:4 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector 1 (pX) [K] is assumed
for that axis.

Examples

Al:23]
50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

M[s]
10 20 30 40
50 60 70 80

M[1;]
10 20 30 40

M[s1]
10 50
Choose Indexing

The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.
Examples

M
10 20 30 40
50 60 70 80

Mlc1l 2]
20

M[2 2pc2 4]
80 80
80 80

M[(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:

S‘_IZI

260

Dyalog APL/W Language Reference

S[3pc10]
111

Simple and Choose indexing are indistinguishable for vector X:

V<10 20 30 40

V[c2]
20

<2
2

vi2]
20

Reach Indexing

The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or scalars)
forming sets of indices that index arrays at successive levels of X starting at the top-
most level. A set of indices has one element per axis at the respective level of nesting
of X in row-major order.

Examples

G<('ABC' 1)('DEF' 2)('GHI' 3)('JKL' &)
G«<2 3pG,('MNO" 5)('PQR"' 6)
G

ABC 1 DEF 2 GHI 3

JKL 4 MNO 5 PQR 6

GL((1 2)1)((2 3)2)]
DEF 6

G[2 2pc(2 2)2]

a1 o
[Sa 6)

G[cet 1]
ABC 1

G[et 1]
ABC 1
ABC
ABC

ABC 1

Chapter 4 Primitive Functions 261

Intersection: ReXnY

Y must be a scalar or vector. X must be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in the
order of occurrence in X. If an item is repeated in X and also occurs in Y, the item is
also repeated in R.

Items in X and Y are considered the same if X=Y returns 1 for those items.

OCT is an implicit argument of Intersection.

Examples

"ABRA'n'CAR'
ARA

1 'PLUS'" 2 n 15
12

For performance information, see Search Functions and Hash Tables in Chapter 2.

Less:

ReX<Y

Y may be any numeric array. X may be any numeric array. R is boolean. Ris 1 if X is
less than Y and X=Y is 0. Otherwise R is 0.

0CT is an implicit argument of Less.

Examples

(2 4) (6 8 10) < 6
11 000

OCT«1E~10

1 1.00000000001 1.000000001 < 1
001

262

Dyalog APL/W Language Reference

Less Or Equal: ReX<Y

Y may be any numeric array. X may be any numeric array. R is boolean. R is 1 if X is
less than Y or X=Y. Otherwise R is 0.

OCT is an implicit argument of Less Or Equal.

Examples
2 468 10 < 6
11100
OCT«1E~10

1 1.00000000001 1.00000001 < 1
110

Logarithm: R«XeY

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Examples

10 ® 100 2
2 0.3010299957

1 e 1

Magnitude: Re|Y

Y may be any numeric array. R is numeric composed of the absolute (unsigned) values
of Y.
Example

[2 73.4+ 0 72.7
2 3.4 0 2.7

Chapter 4 Primitive Functions 263

Match:

R«X=Y

Y may be any array. X may be any array. R is a simple boolean scalar. If X is identical
to Y, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape and

the same prototype (disclosed nested structure).

OCT is an implicit argument of Match.

Examples

8=10
1

"'=10
0

A
THIS
WORD

A=2 L4p'THISWORD'
1

A=110
0

+B<«A A
THIS THIS
WORD WORD

A=oB
1

(0pA)=0p8B
0

'=50p8B

1111
1111

1 1 =DOpA

264 Dyalog APL/W Language Reference

Matrix Divide: R«XBEY

Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array
of rank 2 or less. Y must be non-singular. A scalar argument is treated as a matrix with
one-element. If'Y is a vector, it is treated as a single column matrix. If X is a vector, it
is treated as a single column matrix. The number of rows in X and Y must be the same.
Y must have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+ . xR is X.
R is determined such that (X-Y+.xR) *2 is minimised.

The shape of Ris (14pY),14pX.

Examples
OPP<«5

B

N =W
o\ O1 >
U1\ O +

35 89 79 B 8
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

A H B
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778

Chapter 4 Primitive Functions 265

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P =a+ bQ are determined:

Q

11

12

13

14

15

16
P

12.03 8.78 6.01 3.75 70.31 72.79
PEQ

14.941 72.9609

Matrix Inverse: R<BEY

Y must be a simple array of rank 2 or less. Y must be non-singular. IfY is a scalar, it is
treated as a one-element matrix. If Y is a vector, it is treated as a single-column matrix.
Y must have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. That is, R+. xY is an identity matrix.

The shape of R is $pY.

Examples
M
4 1
2 1
+A<EM

0.1666666667 0.1666666667
~0.3333333333 0.6666666667

Within calculation accuracy, A+ . xM is the identity matrix.

A+ . xM

O+
- O

266 Dyalog APL/W Language Reference

Maximum: ReXTY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
larger of the numbers X and Y.
Example

~2.01 0.1 15.3 [73.2 "1.1 22.7
~2.01 0.1 22.7

Membership: R«XeY

Y may be any array. X may be any array. R is boolean. An element of R is 1 if the
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if XY returns 1 for those
elements.

OCT is an implicit argument of Membership.

Examples

‘THIS NOUN' € 'THAT WORD'
110010100

"CAT' 'DOG' 'MOUSE' € 'CAT' 'FOX' 'DOG' 'LLAMA'
110

For performance information, see Search Functions and Hash Tables in Chapter 2.

Minimum: ReXLY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
smaller of X and Y.
Example

“2.1 0.1 15.3 | 73.2 1 22
3.2 0.1 15.3

Minus: R«X-Y

See function Subtract.

Chapter 4 Primitive Functions 267

Mix: (OML) R«t[K]Y or R«a2[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.

If OML < 2, Mix is represented by the symbol: 1.
If OML > 2, Mix is represented by the symbol: .

Y may be any array. All of the items of Y must be scalars and/or arrays of the same
rank. It is not necessary that nonscalar items have the same shape.

K is an optional axis specification. If present it must be a scalar or unit vector. The
value of K must be a fractional number indicating the two axes of Y between which
new axes are to be inserted. If absent, new ones are added at the beginning.

R is an array composed from the items of a Y assembled into a higher order array with
one less level of nesting. If items of Y have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along each axis
of all items in Y. The shape of R is the shape of Y with the shape of a typical
(extended) item of Y inserted between the | Kth and the [Kth axes of Y.

Examples
t(1)(1 2)(1 2 3)

-
NN O
o

t[0.5](1) (1 2) (1 2 3)

A<('andy' 19)('geoff' 37)('pauline' 21)

tA
andy 19
geoff 37
pauline 21

t1[0.5]A
andy geoff pauline
19 37 21

268 Dyalog APL/W Language Reference

Multiply: R«XxY

Y may be any numeric array. X may be any numeric array. R is the arithmetic product
of Xand Y.

This function is also known as Times.

Example

3210x21496
6 890

Nand: ReXAY

Y must be a boolean array. X must be a boolean array. R is boolean. The value of R is
the truth value of the proposition "not both X and Y", and is determined as follows:

X Y R

0 0 1

0 1 1

1 0 1

1 1 0
Example

(0 1)(1 0) ~ (0 0)(1 1)

11 01

Natural Logarithm: R«®Y

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian)
logarithm of Y whose base is the mathematical constant e=2.71828....
Example

el 2
0 0.6931471806

Chapter 4 Primitive Functions 269

Negative:

Re-Y

Y may be any numeric array. R is numeric. R is the negative value of Y.

Example
-4 20 73 75
4 72 0 35

ReXVY

Y must be a boolean array. X must be a boolean array. R is boolean. The value of R is
the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R

0 0 1

0 1 0

1 0 0

1 1 0
Example

0011vo0101
1000

Re~Y

Y must be a boolean array. R is boolean. The value of RisOifYis 1,andRis 1ifY is
0.
Example

~0 1
10

270

Dyalog APL/W Language Reference

Not Equal: ReXzY

Y may be any array. X may be any array. R is boolean. R is 0 if X=Y. Otherwise R is
1.

For boolean X and Y, the value of R is the [exclusive or[] result, determined as
follows:

N = X=T S
—OorRO | <
oOrRrroO |m

0CT is an implicit argument of Not Equal.

Examples

123 =#1.123
100

OCT<«1E~10

1#1 1.00000000001 1.0000001
001

1 2 3 #'CAT'
111

Not Match: ReX#Y

Y may be any array. X may be any array. R is a simple boolean scalar. If X is identical
to Y, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape and

the same prototype (disclosed nested structure).

OCT is an implicit argument of Not Match.

Chapter 4 Primitive Functions 271

Examples
8#10

'T#10
+A<c(13) 'ABC'
1 2 3 ABC
A#(13) 'ABC'
A#c(13) 'ABC'
0#0pA
(1t0pA)#<(0 0 0) '

Or, Greatest Common Divisor: ReXvY

Case 1: X and Y are boolean

R is boolean and is determined as follows:

X Y R

0 0 0

0 1 1

1 0 1

1 1 1
Example

0011voO0101
0111

Case 2: X and Y are numeric (non-boolean)
R is the Greatest Common Divisor of X and Y.

Example

15127 v 35140
5127

OCT is an implicit argument in case 2.

272

Dyalog APL/W Language Reference

Partition:

(OML=23) ReX<c[K]Y

Y may be any non scalar array.
X must be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.
A new partition is started in the result whenever the corresponding element in X is

greater than the previous one. Items in Y corresponding to Os in X are not included in
the result.

Examples

OML<3

DISPLAY 1 1 1 2 2 3 3 3c'NOWISTHE'
LTI
| [NowW| |IS| |THE| |
|

DISPLAY 1 1 1 0 0 3 3 3c'NOWISTHE'

| .
| |INOW| |THE|
IIIII

E ____________

TEXT«' NOW IS THE TIME '
DISPLAY(' '#TEXT)<TEXT

| vo--. - -, o=, |

| |INOW| |IS| |THE| |TIME]| |

| I___I I__I I___I I____I |

IE ________________________]
DISPLAY CMAT<[FMT(' ',ROWS),COLS;NMAT

) Jan Feb Mar i

| Cakes 0 100 150 |

| Biscuits 0 0 350 |

| Buns 0 1000 500 |

273

A Split at blank cols.

Chapter 4 Primitive Functions
'#CMAT) cCMAT

DISPLAY (v#'

1
o —— ¢ —— . — D |
I L1 101 1ol 1O 1
I @1 1wl 1wl | o1l |
AT 1 A1 A O
o —— ¢ —— . — o == | e e — ————
1 Z 1 1
. —_— . —_— . —_— ¢ —_ ~ | . —_—]
Il 1ol 1O0O1 1Ol | ~ 1 1 0 I —_-
[I I I = I 11Ol Ne] = — 11O 1 |
w1~ 11Ol ~ V] Uil 431 4= 1
4 [14 1 4~ 1 ~ ~ | e —_—
f— e—e e— e—- | Q 1 1
1 =+ o Ol e—- 1
e—- e e—- e—- 1~ —-
I C1 1 O1 101 1Ol 1 =+ ~ ~— 11 [I Yo B I |
I @ | | (] [[y e — I 4+ M1 4= 1
e T B 14 14 [= -~ | 1 S e—= e—
«— - - — «—_ - - —_- | | «—_- «—_ - | | |
1 > e——— > | —_—- e—=- I NI I O | > 1 e—- 1
- — - —_- /== == | < | FONO I < I 43+ +01 +—=1 4=N <!l | O ee—=- |
1 [[7 B B | [— 1 ~— | —1 1 —_—— e e—- e—- | 1 [N = o B |
1 [[I | [a | 1 a | 1 al AN A=
1 [(T | [N1 O~ | wn i e—- Nl e—- e—- |
1 [TV, T R (s O | [H | ~— | H o e—- 1 &+ 1 1 H | 1
1 [T« T T TR & T T 7, I I [a | Ol eo—=- o+—- 1 OI | —= 1 1 o1 e—- 1
1 [TRV T TR 77 T O T = Il NOO &+ | I 1T N 1O I~ [I 1T e—- |
| L1 @l =1 1 31 1 1 — | [11 [[s B | [[P B I |
4 1 401 ool 01 1 1 | I 4214000 4+ =1 I 4= A<= 1
f— t—e e—e e—= | Il A O0OMmMm | | e—= e—= e—- e—- | o= ==
w 4 ~ 4 w 4 w
—_- —— ——— — —— — — — ¢ = —— ¢ > —— — — — — — — — — —— ¢ = —— — —— -

274 Dyalog APL/W Language Reference

Partitioned Enclose: (OML<3) Re«Xc[K]Y

Y may be any array. X must be a simple boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or one-
element vector. The value of K must be an axis of Y. If absent, the last axis of Y is
implied.

X must have the same length as the Kth axis of Y. However, if X is a scalar or one-
element vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of

Y at positions corresponding to each 1 in X up to the position before the next 1 in X (or
the last element of X) become the successive items of Y. The length of R is +/X (after
possible extension).

Examples

010011000 <19
234 5 6789

1 01 c[1] 3 4p112

1234 910 11 12
56 7 8

1001 c[2]3 4pr12
1 2 3 4
5 6 7 8
9 10 11 12

Pi Times:

R«oY

Y may be any numeric array. R is numeric. The value of R is the product of the
mathematical constant ©=3.14159... (Pi), and Y.

Example

o0.5 1 2
1.570796327 3.141592654 6.283185307

Chapter 4 Primitive Functions 275

Pick:

R«XoY

Y may be any array. X is a scalar or vector of indices of Y, viz. 1pY. R is an item
selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items of
X are simple integer scalars or vectors which identify a set of indices, one per axis at
the particular level of nesting of Y in row-major order. Simple scalar items in Y may

be picked by empty vector items in X to any arbitrary depth.

0IO0 is an implicit argument of Pick.

Examples
G<('ABC' 1)('DEF' 2)('GHI'" 3)('JKL"' 4)
G«2 3pG,('MNO' 5)('PQR"' 6)
G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

((c2 1),1)-G

JKL

(c2 1)>G
JKL &4

((2 1)1 2)>G
K

(5pc10)>10
10

Plus:

ReX+Y

See function Add.

276 Dyalog APL/W Language Reference

Power: ReXxY

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

If Y is zero, R is defined to be 1.
If X is zero, Y must be non-negative.

If X is negative, and Y can be approximated as a rational number of the form P+Q
where P and Q are relatively prime integers, then:

a) if Q is even, X*xY gives a DOMAIN ERROR
b) if Q is odd and P is even, then XxY <> (]|X)xY
c) if Q and P are both odd, then X*Y <«> - (|X)x*Y

If X is negative, and Y cannot be approximated as a rational number, then
X*xY <> =(|X)*Y,

Examples

2%2 T2
4 0.25

9 64x0.5
38

“27%x2 3,(1 2%3),1.2
729 719683 3 9 52.19591521

Chapter 4 Primitive Functions 277

Ravel: Re«,Y

Y may be any array. R is a vector of the elements of Y taken in row-major order.

Examples
M
123
4L 5 6
»M
123456
A
ABC
DEF
GHI
JKL
> A
ABCDEFGHIJKL
p,10
1

Ravel with Axes: R«,[K]Y

Y may be any array.
K is either:

e A simple fractional scalar adjacent to an axis of Y, or
e A simple integer scalar or vector of axes of Y, or
e An empty vector.

Ravel with axis can be used with selective specification.
R depends on the case of K above.

If K is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the K'th position.

ppR «> 1+pp¥
pR <> (1,pY)[AK,1ppY]

278 Dyalog APL/W Language Reference

Examples

,[0.5]'ABC'
ABC

p,[0.5]"ABC!'
13

,[1.5]"'ABC'
A
B
C

p,[1.5]"'ABC'
31

MAT<3 4p112

p,[0.5]IMAT
1 3 4

p,[1.5IMAT
31 4

p,[2.5IMAT
3 41

If K is an integer scalar or vector of axes of Y, then:

K must contain contiguous axes of Y in ascending order.
R contains the elements of Y raveled along the indicated axes.

Note that if K is a scalar or single element vector, R < Y.

ppR «> 1+(ppY)-p,K

Examples

1 2 3 4
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

2 34

Chapter 4 Primitive Functions

279

,[1 2]IM
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

p,[1 2IM
6 4

,[2 3IM
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

p,[2 3]IM
2 12

If K is an empty vector a new last axis of length 1 is created.

pR <« (pY),1

Examples
Ql«'January' 'February' 'March'
DISPLAY Q1

| m————— Fm————— >—_———

Vo o
| |January| |
1 1 |

| ommmme- |

| |February| |

>————

| iMarchi

280 Dyalog APL/W Language Reference

Reciprocal: RetY

Y must be a numeric array. R is numeric. R is the reciprocal of Y; thatis 1+Y. If
0DIV=0, +0 results ina DOMAIN ERROR. If[JDIV=1, +0 returns 0.

ODIV is an implicit argument of Reciprocal.

Examples

+4 2 5
0.25 0.5 0.2

Opiv « 1
+0 0.5

Replicate:

R«X/[K]Y

Y may be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, K must be a simple integer scalar or unit
vector. The value of K must be an axis of Y. If absent, the last axis of Y is implied.
The form R<X#Y implies the first axis of Y. If'Y is a scalar, it is treated as a one-
element vector.

The length of X must be the length of the Kth (or implied) axis of Y. However, if X is a
scalar or one-element vector, it will be extended to the length of the Kth axis.

R is composed from sub-arrays along the Kth axis of Y. If X[I] (an element of X) is
positive, then the corresponding sub-array is replicated X[I] times. If X[I] is zero,
then the corresponding sub-array of Y is excluded. If X[I] is negative, then the fill
element of Y (ce>Y) isreplicated | X[I] times. Each of the (replicated) sub-arrays
and fill items are joined along the Kth axis in the order of occurrence. The shape of R
is the shape of Y except that the length of the (implied) Kth axis is +/ | X (after possible
extension).

This function is sometimes called Compress when X is boolean.

Chapter 4

Primitive Functions 281

Examples

1

3

1010 1/15

5

o
w =

o w o w
N

0 1#M

o

"2 3 "4 5/15
330000555655

0 1/M

1/[1IM

Replicate First:

Re«X#[K]Y

The form R«X#Y implies replication along the first axis of Y. See Replicate above.

Reshape:

ReXpY

Y may be any array. X must be a simple scalar or vector of non-negative integers. R is
an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically if required. If Y is empty, R is composed of fill elements of Y
(ce>Y). If X contains at least one zero, then R is empty. If X is an empty vector, then
R is scalar.

Examples

—_

oo

2 3p18
3
6
2 3pik
3
2
2 3p10
0
0

282 Dyalog APL/W Language Reference

Residue:

ReX|Y

Y may be any numeric array. X may be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0, Ris Y. For
other argument values, R is Y-NxX where N is some integer such that R lies between 0
and X, but is not equal to X.

0CT is an implicit argument of Residue.
Examples

3373 73|55 744
1271 72

0.5]13.12 71 0.6
0.12 0 0.4

1 0 1]75.25 0 2.41
“0.25 0 0.41

Note that the ASCII pipe (') may also be interpreted as Residue (|).

Reverse:

R«$p[K]Y

Y may be any array. The axis specification is optional. If present, K must be an integer
scalar or one-element vector. The value of K must be an axis of Y. If absent, the last
axis is implied. The form R«<®Y implies the first axis.

R is the array Y rotated about the Kth or implied axis.

Examples

1 2 3 4+ 5

5 4 2 1

w

M

£
ul
o w

oM

o w
(&)
£

Chapter 4 Primitive Functions 283

eM

-~
N ol
w o

¢[1IM

- F
N ol
w o

Reverse First: R«o[K]Y

The form R«eY implies reversal along the first axis. See Reverse above.

Roll:

Re?Y

Y may be any positive integer array. R is an integer, pseudo-randomly selected from
the integers 1Y with each integer in this population having an equal chance of being
selected.

0I0 and ORL are implicit arguments of Roll. A side effect of Roll is to change the
value of (JRL.
Examples

79 99
2 75

Rotate:

R<X$[K]Y

Y may be any array. X must be a simple integer array. The axis specification is
optional. If present, K must be a simple integer scalar or one-element vector. The
value of K must be an axis of Y. If absent, the last axis of Y is implied. The form
R<XeY implies the first axis.

IfY is a scalar, it is treated as a one-element vector. X must have the same shape as the
rank of Y excluding the Kth dimension. If X is a scalar or one-element vector, it will be
extended to conform. IfY is a vector, then X may be a scalar or a one-element vector.

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. If the value is
positive, the rotation is in the sense of right to left. If the value is negative, the rotation
is in the sense of left to right.

284 Dyalog APL/W Language Reference

Examples

3
456 7
4512 3

JoM
3 4+ 1 2
6 7 8 5

12 9 10 11
15 16 13 14

Rotate First: ReXe[K]Y

The form R«<XeY implies rotation along the first axis. See Rotate above.

Chapter 4 Primitive Functions 285

Shape: R«pY

Y may be any array. R is a non-negative integer vector whose elements are the
dimensions of Y. IfY is a scalar, then R is an empty vector. The rank of Y is given by

ppY.
Examples
pl0
p'CAT'
3
p3 Wpr12
3 4
+G<(2 3p16)('CAT' 'MOUSE' 'FLEA')
1 2 3 CAT MOUSE FLEA
4 5 6
pG
2
ppG
1
07G
23 3
077G

Signum: RexY

Y may be any numeric array. R is an integer array whose value indicates whether the
value of Y is negative (T 1), zero (0) or positive (1).
Example

x~15.3 0 101
101

286 Dyalog APL/W Language Reference

Split:

R«‘[K]Y

Y may be any array. The axis specification is optional. If present, K must be a simple
integer scalar or one-element vector. The value of K must be an axis of Y. If absent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R is a scalar if Y is a scalar.
Otherwise R is an array whose rank is ~1+ppY and whose shape is (Kz1ppY)/pY.
Examples

43 4p'MINDTHATSTEP'
MIND THAT STEP

$2 5p110
12345 6789 10

+[1]12 5pt10
16 27 38 49 510

Subtract:

R«X-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example

3 724%0-21"72%
1 736 74

Chapter 4 Primitive Functions 287

Take: ReX1tY

Y may be any array. X must be a simple integer scalar or vector.

IfY is a scalar, it is treated as a one-element array of shape (p, X)p1. The length of X
must be the same as the rank of Y. However, if X is a scalar or a one-clement vector, it
will be extended to conform.

R is an array of the same rank as Y (after possible extension), and of shape | X. If

X[I] (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
of the Ith axis of Y. If X[I] is negative, then X[I] sub-arrays are taken from the end
of the Ith axis of Y.

If more elements are taken than exist on axis I, then the extra positions in R are filled
with the fill element of Y (ce>Y).
Examples

51'ABCDEF'
ABCDE

5t1 2 3
12300

511 2 3
00123

54(13) (i4) (15)
123 1234 12345 000 00O

M
1234
5678

2 3tM
12
567

1 T2tM

288 Dyalog APL/W Language Reference

Take with Axes: R«Xt[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a
vector of zero or more axes of Y.

R is an array of the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:
pPR <> ppY

The size of each axis of R is determined by the corresponding
element of X:

(pR)L[,K] <= |,X

Examples

0«M«<2 3 Lpi24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

2t[2IM
1 2 3 4
5 6 7 8

13 14 15 16
17 18 19 20

2t[3IM

Chapter 4 Primitive Functions 289

2 “2t[3 2]M
5 6
9 10
17 18
21 22
Times: ReXxY
See function Multiply.

Transpose (Monadic): R«QY

Y may be any array. R is an array of shape ¢pY, similar to Y with the order of the axes
reversed.

Examples
M

anN

1 3
4 6

&M

WN —~
o O F

Transpose (Dyadic): R«X®Y

Y may be any array. X must be a simple scalar or vector whose elements are included
in the set 1ppY. Integer values in X may be repeated but all integers in the set 1 [/X
must be included. Also the number of elements in X must not exceed the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the Ith axis of Y. If X repositions two or more
axes of Y to the same axis, the elements used to fill this axis are those whose indices on
the relevant axes of Y are equal.

0IO0 is an implicit argument of Dyadic Transpose.

290 Dyalog APL/W Language Reference

Examples

1 2 3 4
17 18 19 20

Type: (OML<1) ReeY

Migration level must be such that [OML<1 (otherwise € means
Enlist).

Y may be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by '

Examples

€(2 3p16)(1 4p'TEXT'")
000
000

Chapter 4 Primitive Functions 291

Union: R«XvY
Y must be a vector. X must be a vector. If either argument is a scalar, it is treated as a
one-element vector. R is a vector of the elements of X catenated with the elements of Y
which are not found in X.
Items in X and Y are considered the same if X=Y returns 1 for those items.
OCT is an implicit argument of Union.
Examples
"WASH' uv 'SHOUT'
WASHOUT
'"ONE' 'TWO' v 'TWO' 'THREE'
ONE TWO THREE
For performance information, see Search Functions and Hash Tables in Chapter 2.
Unique: RevY

Y must be a vector. R is a vector of the elements of Y omitting non-unique elements
after the first.

OCT is an implicit argument of Unique.

Examples

v 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'
CAT DOG MOUSE FOX

u 22 10 22 22 21 10 5 10
22 10 21 5

292 Dyalog APL/W Language Reference

Without: ReX~Y

See function Excluding.

Zilde: R<©

The empty vector (10) may be represented by the numeric constant € called ZILDE.

293

CHAPTER 5

Primitive Operators

Operator Syntax

Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Chapter 1). A dyadic operator has short scope on the
right. Right scope may be extended by the use of parentheses.

An operand may be an array, a primitive function, a system function, a defined
function or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived function
may be monadic or dyadic and it may or may not return an explicit result.

Examples

+/15
15

(x02)13
1409

PLUS « + ¢ TIMES <« x
1 PLUS.TIMES 2

2
ONL 2

A

X
OeEX"+0ONL 2

ONL 2

294 Dyalog APL/W Language Reference

Axis Specification

Some operators may include an axis specification. Axis is itself an operator. However
the effect of axis is described for each operator where its specification is permitted.
0IO0 is an implicit argument of the function derived from the Axis operator.

The description for each operator follows in alphabetical sequence. The valence of the
derived function is specifically identified to the right of the heading block.

Class of Name Producing Monadic Producing Dyadic
Operator derived function derived function
Monadic Assignment Xf<Y
Assignment X[I]f<«Y
Assignment (EXP X)f<Y
Commute Xf=Y
Each £y XFy
Reduction f/Y []
fAY []
Scan f\Y []
fxy [1]
Spawn f&Y Xf&Y
Dyadic Axis f[BJY Xf[B]Y
Composition fog¥Y XfogY
AegyY
(foB)Y
Inner Product Xf.gY
Outer Product
Xeo.g¥Y
[] Indicates optional axis specification

Figure 5(i) : Primitive Operators

Chapter 5 Primitive Operators 295

Operator Presentation

Monadic and Dyadic primitive operators are presented in alphabetical order of their
descriptive names as shown in Figure 5(i).

The valence of the operator and the derived function are implied by the syntax in the
heading block.

Assignment (Modified): {R}«Xf<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array
whose items are appropriate to function f.

R is the [Ipass-through[] value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the

result of XfY.
Examples
A
12345
A+<«10
A
11 12 13 14 15
D«AX«Z
2
A

22 24 26 28 30

vec+« 4+9?9 ¢ vec
35171240 73 2

vec/=«vec>0 ovec
35142

296 Dyalog APL/W Language Reference

Assignment (Indexed Modified): {R}<X[I]f«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array. I
must be a valid index specification. The items of the indexed portion of X must be
appropriate to function f.

R is the [pass-through[] value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of X, thatis X[I], to
the result of X[I]fY. This result must have the same shape as X[I].

Examples

A
12345

+A[2 L4]+«1
1

A
133565

A[3]+<2

A
1 31.555

If an index is repeated, function f will be applied to the successive values of the
indexed elements of X, taking the index occurrences in left-to-right order.

Example
B<«5p0

B[2 4+ 1 21 4 2 4 1 3]+«1

B
331360

Chapter 5 Primitive Operators 297

Assignment (Selective Modified): {R}«(EXP X)f<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
EXP is an expression that selects elements of X. (See Selective Assignment in Chapter
4 for a list of allowed selection functions.) The selected elements of X must be
appropriate to function f.

R is the (pass-through[J value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of X to the result of
X[I]fY where X[I] defines the elements of X selected by EXP.

Example

A
12 36 23 78 30

((A>30)/A) x« 100
A
12 3600 23 7800 30

298 Dyalog APL/W Language Reference

Axis (with Monadic Operand): R«f[B]Y

f must be a monadic primitive mixed function taken from those shown in Figure 5(ii)
below, or a function derived from the operators Reduction (/) or Scan (\). B must be a
numeric scalar or vector. Y may be any array whose items are appropriate to function
f. Axis does not follow the normal syntax of an operator.

Function Name Range of B

¢ or e Reverse BeippY

1 Mi x (0#1]B)~(B>0I0-1)~(B<dIO0+ppY)

¥ Split BeippY

s Ravel fraction, or zero or more axes of Y
c Enclose (B=10)v(~r/BerppY)

Figure 5(ii) : Primitive monadic mixed functions with optional axis.

In most cases, B is required to be an integer which identifies a specific axis of Y. An
exception occurs when f is the Mix function (1) in which case B is a fractional value
whose lower and upper integer bounds select an adjacent pair of axes of Y or an
extreme axis of Y. For Ravel (,) and Enclose (<), B can be a vector of two or more
axes.

0IO0 is an implicit argument of the derived function which determines the meaning of
B.

Examples

$[1]2 3pr6

b 5 6

123

t[.1]J'ONE" 'TWO'
oT
NW
EO

Chapter 5 Primitive Operators 299

Axis (with Dyadic Operand): ReXf[BJ]Y

f must be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Figure 5(iii) below. B must be a numeric scalar or vector. X and Y may be
any arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Function | Name Range of B

/ or # | Replicate BeippY

\ or X | Expand BeippY

c Partitioned
Enclose BeippY

¢ or e | Rotate BeippY

, or 5 |Catenate/ (0#1]8)(8>010-1)~(B<OIO0+(ppX)[ppY)
Laminate

) Take zero or more axes of Y

} Drop zero or more axes of Y

Figure 5(iii) : Primitive dyadic mixed functions with optional axis.

In most cases, B must be an integer value identifying the axis of X and Y along which
function f is to be applied. Exceptionally, B must be a fractional value for the
Laminate function (,) whose upper and lower integer bounds identify a pair of axes or
an extreme axis of X and Y. For Take (1) and Drop (V) , B can be a vector of two or
more axes.

0I0 is an implicit argument of the derived function which determines the meaning of
B.

300

Dyalog APL/W Language Reference

Examples
1 45 =[1] 3 2p16
10
01
10
2 72 1/[2]2 3p'ABCDEF"
AA C
DD F
"ABC',[1.1]'="
A=
B=
C=
"ABC',[0.1]"'="
ABC
gd10<0
"ABC',[70.5]'="

n x>
n
no

Axis with Scalar Dyadic Functions

The axis operator [X] can take a scalar dyadic function as operand. This has the effect
of ‘stretching’ a lower rank array to fit a higher rank one. The arguments must be
conformable along the specified axis (or axes) with elements of the lower rank array
being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis
specification, and f a scalar dyadic function, then the expressions Hf [XL and

L f [X]H are conformable if (pL)<«=(pH) [X]. Each element of L is replicated along
the remaining (pH)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. if R is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression L f [X]R is
conformable if (pL)«=>(pR)[X].

Chapter 5 Primitive Operators 301
Examples
mat
10 20 30
40 50 60
mat+[1]1 2 A add along first axis
11 21 31
42 52 62
mat+[2]1 2 3 A add along last axis
11 22 33
41 52 63
cube
100 200 300
400 500 600
700 800 900
1000 1100 1200
cube+[1]1 2
101 201 301
401 501 601
702 802 902
1002 1102 1202
cube+[3]1 2 3
101 202 303
401 502 603
701 802 903
1001 1102 1203
cube+[2 3]mat
110 220 330
440 550 660
710 820 930
1040 1150 1260
cube+[1 3]mat
110 220 330
410 520 630
740 850 960
1040 1150 1260

302

Dyalog APL/W Language Reference

Commute: {R}<XFf=~Y

f may be any dyadic function. X and Y may be any arrays whose items are appropriate
to function f.

The derived function is equivalent to Y f X. The derived function need not return a
result.

If left argument X is omitted, the right argument Y is duplicated in its place, i.e.

f~Y <> Y=Y

Examples

N
3254613

N/=2|N
3513

p=3
333

mean<+/o(+op~) A mean of a vector

mean 110
5.5

The following statements are equivalent:
F/~«I
FeF/~1
F«I/F

Commute often eliminates the need for parentheses

Chapter 5 Primitive Operators 303

Composition (Form I): {R}<«fogY¥

f may be any monadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. The items of gY
must be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex functions.

Examples

RANK <« pep
RANK ™ 'JOANNE' (2 3pi6)
1 2

+/0172 4 6
3 10 21

OVR'SUM'
V R«<SUM X
[1] Re+/X
v

SUMe12 4 6
3 10 21

304

Dyalog APL/W Language Reference

Composition (Form ll):

{R}<+AcgY

g may be any dyadic function. A may be any array whose items are appropriate to
function g. Y may be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples
2 20p 7 'AB'
AA BB
AA BB
SINE « 100

SINE 10 20 30
“0.5440211109 0.9129452507 ~0.9880316241

The following example uses Composition Forms I and II to list functions in the
workspace:

ONL 3
ADD
PLUS

Qo<«eoQVR™4ONL 3

VvV ADD X
[1] +LABp=0%[INC'SUM' o SUM<O
[2] LAB: SUM«SUM++/X

v

V R«A PLUS B
[1] R<A+B

v

Chapter 5 Primitive Operators 305

Composition (Form lll): {R}«(foB)Y

f may be any dyadic function. B may be any array whose items are appropriate to
function f. Y may be any array whose items are appropriate to function f.

The derived function is equivalent to Y fB. The derived function need not return a
result.

Examples

(x20.5)4 16 25
245

SQRT « x0.5

SQRT 4 16 25
2 45

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV): {R}<XfogY¥

f may be any dyadic function. g may be any monadic function which returns a result.
Y may be any array whose items are appropriate to function g. Also gY must return a
result whose items are appropriate as the right argument of function f. X may be any
array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.

Examples
+o:/40p1 A Golden Ratio! (Bob Smith)
1.618033989

0,°1715
01 012 0123 01234 012345

306 Dyalog APL/W Language Reference

Each (with Monadic Operand): {R}«fY

f may be any monadic function. Y may be any array, each of whose items are
separately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. If a result is returned, R has the same shape as Y, and
its elements are the items produced by the application of function f to the
corresponding items of Y.

IfY is empty, the derived function is applied once to the prototype of Y, and the shape
of R is the shape of Y.

Examples
G<('TOM' (13))('DICK' (14))('HARRY' (15))
pG
3
076
2 2 2
0™"G

3 3 b 4 5 5

+FX7('FOO1"' 'A«1')('FO02' 'A«2')
FOO1 FOO2

Chapter 5 Primitive Operators 307

Each (with Dyadic Operand): {R}<XFfY

f may be any dyadic function. X and Y may be any arrays whose corresponding items
(after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of X
and Y. If X or Y is a scalar or single-element array, it will be extended to conform with
the other argument. The derived function need not produce an explicit result. Ifa
result is returned, R has the same shape as Y (after possible scalar extension) whose
elements are the items produced by the application of the derived function to the
corresponding items of X and Y.

If X or Y is empty and scalar conformable, the derived function is applied once to the
prototypes of X and Y, and the shape of R is determined by the rules for scalar
conformability.

Examples

+G«<(1 (2 3))(4 (5 6))(8 9)10
1 23 L 56 9 8 10

1¢7°G
23 1 56 4 98 10
1 32 4L 6 5 8 9 10

1 23 L 5 6 8 9 10

123 417G
1 4 56 890 10000

"ABC', " 'XYZ'
AX BY CZ

308 Dyalog APL/W Language Reference

Inner Product: R«Xf.gY

f must be a dyadic function. g may be any dyadic function which returns a result. The
last axis of X must have the same length as the first axis of Y.

The result of the derived function has shape (T14pX),14pY. Each item of R is the
result of f/xg"y where x and y are typical vectors taken from all the combinations of
vectors along the last axis of X and the first axis of Y respectively.

Function f (and the derived function) need not return a result in the exceptional case
when 2="11pX. In all other cases, function f must return a result.

If the result of xg ™"y is empty, for any x and y, a DOMAIN ERROR will be reported
unless function f is a primitive scalar dyadic function with an identity element shown
in Figure 5(iv).

Examples

1 2 3+.x10 12 14
76

1 2 3 PLUS.TIMES 10 12 14
76

+/1 2 3x10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMESA.='WILLIAM '
0100

Chapter 5 Primitive Operators 309

Outer Product: {R}<+Xo.g¥Y

g may be any dyadic function. The left operand of the operator is the symbol o. X and
Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of R is (pX), pY. Each element of R is the item returned by
function g when applied to the particular combination of elements of X and Y.

Examples

1 2 30.x10 20 30 4O
10 20 30 4O
20 40 60 80
30 60 90 120

1 2 30.p'AB'
A B
AA BB
AAA BBB
1 20,,1 2 3
11 12 13
21 22 23
(13)e0.=13

(eNeN
OO
-~ OO

310 Dyalog APL/W Language Reference

Power Operator: {R}«{X}(fxg)Y

If right operand g is a numeric integer scalar, power applies its left operand function f
cumulatively g times to its argument. In particular, g may be boolean 0 or 1 for
conditional function application.

If right operand g is a scalar-boolean-returning dyadic function, then left operand
function f is applied repeatedly until ((f Y) g Y) or until a strong interrupt
occurs. In particular, if g is = or =, the result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:
X (f ¥ g) Y > (Xof % g) Y

A negative right operand g applies the inverse of the operand function f, (| g) times.
In this case, f may be a primitive function or an expression of primitive functions
combined with primitive operators:

° compose

a each

o, outer product
= commute

[] axis

\ scan

* power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument g generates DOMAIN ERROR.

Chapter 5 Primitive Operators

3N

Examples

14
7

(,0co0,%(1==,vec))vec
ab cel 0 1{(c*a)w} "abc
cap«<{(ao*a)w}

a b c+l 0 tccaprabc
succ«lo+

(succ*4)10

(succ*™3)10

1+o+x=1

1.618033989

f«<(320+)0(%x01.8)
f 0 100

32 212

cef*x"1
c 32 212

0 100

12

10

invs<{(ao*"1)w}

+\invs 1 3 6 10
3 4

201invs 9
01

dual<«{ww*~1 oo ww w}
mean<«{(+/w)+pw}

mean duale 1 2 3 4 5

2.605171085

+/dual+ 1 2 3 4 5

0.4379562044

mean dual(x=)1 2 3 4 5

3.31662479

hw

®dualt 'hello'
eo Ir 11 od

'world'

ol

el

ravel-enclose if simple.

enclose first and last.
conditional
enclose first and last.
successor function.

fourth successor of 10.

third predecessor of 10.

fixpoint: golden mean.

Fahrenheit from Celsius.

c is Inverse of f.

Celsius from Fahrenheit.

inverse operator.

scan inverse.

decode inverse.

dual operator.
mean function.
geometric mean.
parallel resistance.

root-mean-square.

vector transpose.

application.

312 Dyalog APL/W Language Reference

Reduction: Re«f/[K]Y

f must be a dyadic function. Y may be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R«f #Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the Kth
(or implied) axis of Y.

Function APL | Identity

Plus (Add)

Minus (Subtract)
Times (Multiply)
Divide

Residue

Minimum

Maximum

Power

Binomial

And

Or

Less

Less Or Equal
Equal

Greater

Greater Or Equal
Not Equal

Encode

Union

Replicate

Expand

Rotate

XOFr OO

|
X

OFRr P POOFROFR,rFPOO0OF KPP

'8';\\kc—|ﬂ|vv HIA A < >e— % —mr—— . x | +

M is the largest number which is representable on
the machine.

Figure 5(iv) : Identity Elements

Chapter 5 Primitive Operators 313

For a typical vector Y, the result is:
c(1aY)f(22Y)f...... f(naY)

The shape of R is the shape of Y excluding the Kth axis. IfY is a scalar then R is a
scalar. If the length of the Kth axis is 1, then R is the same as Y. If the length of the
Kth axis is 0, then DOMAIN ERROR is reported unless function f occurs in Figure
5(iv), in which case its identity element is returned in each element of the result.

Examples
v/00O1 0010

a1 N
o w

+/M

+#M

+/[1IM

+/(1 2 3)(4 5 6)(7 8 9)

12 15 18

,/'ONE' 'NESS'
ONENESS

+/10

’/I '
DOMAIN ERROR
’/I 1

A

Reduce First: Ref£Y

The form R«f #Y implies reduction along the first axis of Y. See Reduce above.

314

Dyalog APL/W Language Reference

Reduce N-Wise: ReXf/[K]Y

f must be a dyadic function. X must be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent, the
last axis of Y is implied. The form R« Xf #Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a ‘window’ which moves along vectors drawn from
the Kth axis of Y.

If X is zero, the resultisa (pY)+(ppY)=1ppY array of identity elements for the
function f. See Figure 5(iv).

If X is negative, each sub-vector is reversed before being reduced.

Examples

ik
123 4

3+/1h4 A (1+2+3) (2+3+4)
6 9

2+/14 A (1+2) (2+3) (3+4)
357

1+/14 A (1) (2) (3) (4)
123 4

0+/14 A Identity element for +
00O0O00O

0x/14 A Identity element for x
11111

2,/14 A (1,2) (2,3) (3,4)
12 23 34

“2,/14 A (2,1) (3,2) (4,3)

21 32 43

Chapter 5 Primitive Operators 315

Scan:

R<f\[K]Y

f may be any dyadic function that returns a result. Y may be any array whose items in
the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R«<f XY implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. If V is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined as
f/ItV.

The shape of R is the same as the shape of Y. If Y is an empty array, then R is the same
empty array.
Examples

v\0 0
001111

—_

0010

M1 1
1110000

[

0111
+\1 2 3 45
136 10 15

+\(1 2 3)(4 5 6)(7 8 9)
123 579 12 15 18

316 Dyalog APL/W Language Reference

M

N

3
6

-

+\M
6
15

=
O w

+\M

[
~N N
O W

+\[1IM

O w

,\"ABC'
A AB ABC

T<'ONE(TWO) BOOK(S)'

#\Te' ()’
0o0oo01111000000110

((Te'()")v=\Te'()")/T
ONE BOOK

Scan First:

R<fXY

The form R«<f XY implies scan along the first axis of Y

. See Scan above.

Chapter 5 Primitive Operators 317

Spawn: {R}«{X}f8Y

& is a monadic operator with an ambivalent derived function. & spawns a new thread in
which f is applied to its argument Y (monadic case) or between its arguments X and Y
(dyadic case). The shy result of this application is the number of the newly created
thread.

When function f terminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active JTSYNC, the thread result appears as the
result of JTSYNC. If no OTSYNC is in effect, the thread result is displayed in the
session in the normal fashion.

Note that & can be used in conjunction with the each operator to launch many
threads in parallel.

Examples
+&4 A Reciprocal in background
0.25
0«84 A Show thread number
5.25
FOO&88 A Spawn monadic function.
2 FOO&3 A dyadic
{NIL}&O A niladic
¢&"'NIL' A

X.G00&99 A thread in remote space.
¢&'0d1 2 A Execute async expression.
'NS'¢&'FOO' A .. remote

PRT& 40n1 9 A PRT spaces in parallel.

318 Dyalog APL/W Language Reference

319

CHAPTER 6

System Functions & Variables

System Functions, Variables, Constants and Namespaces provide information and
services within the APL environment. Their case-insensitive names begin with [.

0 0 0A 0A OAI

OAN OARBIN OARBOUT OAT OAv
OAvu OBASE OCLASS OCLEAR gdcMp
Ocr acs gct gcy 0o

0oF OpIv 0oL 00bM aoQ

ODR 0eb OeM OEN gex
OEXCEPTION | DEXPORT OF APPEND OFAVAIL dFCcoPY
OFCREATE OFDROP OFERASE OFHOLD OFIX
OFLIB OFMmT OFNAMES OFNUMS OFPROPS
OFRDAC OFRDCI OFREAD OFRENAME OFREPLACE
OFRESIZE OFSIZE OFSTAC OFSTIE OFTIE
OFUNTIE aF X OINSTANCES | 0I0 OKL

gLc OLOAD gLock aLx OMAP
OML OMONITOR ONA ONAPPEND ONC
ONCREATE ONERASE ONEW ONL ONLOCK
ONNAMES ONNUMS aneQ ONR ONREAD
ONRENAME ONREPLACE | ONRESIZE ONS ONSI
ONSIZE ONTIE ONULL ONUNTIE ONXLATE
OoFF 0dor OPATH OPFKEY aep

gpw OREFS ORL ORTL OSAVE
gso dse dsH OSHADOW gsI
OSIGNAL OsIzE adsm OsrR 0SRC
OSTACK OSTATE gsTop gsvc gsvo
gsvaq OSVR asvs aTc OTCNUMS

320

Dyalog APL/W Language Reference

OTGET OTHIS gTio OTKILL OTNAME
OTNUMS gTrpooL gTPuT OTRACE OTRAP
OTREQ ars OTSYNC gucs OUSING
OvrI OVR OWA aowc OwG
aOwN aws OwWSID awx OxsI
OxT

Chapter 6 System Functions & Variables 321

System Variables

System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate,
otherwise an error will be reported immediately.

Example

0I0+«3

DOMAIN ERROR
0I0+<3
A

System variables may be localised by inclusion in the header line of a defined function
or in the argument list of the system function JSHADOW. When a system variable is
localised, it retains its previous value until it is assigned a new one. This feature is
known as [Ipass-through localisation[. The exception to this rule is JTRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Unless otherwise stated, system variables are associated with namespaces.

Name Description Scope

0 Character Input/Output Session

0 Evaluated Input/Output Session
OAvu Atomic Vector - Unicode Namespace
gcT Comparison Tolerance Namespace
go1iv Division Method Namespace
010 Index Origin Namespace
OoLx Latent Expression Workspace
OmML Migration Level Namespace
OPATH Search Path Session
aep Print Precision Namespace
apw Print Width Session
OrRL Random Link Namespace
ORTL Response Time Limit Namespace
0dsm Screen Map Workspace
OTRAP Event Trap Workspace
OUSING Microsoft .Net Search Path Namespace
OwsID Workspace Identification Workspace
OwXx Window Expose Namespace

322 Dyalog APL/W Language Reference

In other words, [, [1, SE, OPATH and [OPW relate to the session. [JL X, JSM, OTRAP
and [JWS ID relate to the active workspace. All the other system variables relate to the
current namespace.

Session Workspace | Namespace

M OLX OAvU

0 OsM gcT

OPATH OTRAP OoIv

OPW OWSID 010

0OSE ML
OPP
ORrRL
ORTL
JUSING
OwX

System Namespaces

(SE is currently the only system namespace.

System Constants

System constants, which can be regarded as niladic system functions, return
information from the system. They have distinguished names, beginning with the quad
symbol, [J. A system constant may not be assigned a value. System constants may not
be localised or erased. System constants are summarised in the following table:

Name Description

OA Underscored Alphabetic upper case characters
OA Alphabetic upper case characters

0AI Account Information

OAN Account Name

OAvV Atomic Vector

0o Digits

OEN Event Number

OEXCEPTION | Reports the most recent Microsoft .net Exception
gdLc Line Count

ONULL Null Item

gdso Screen (or window) Dimensions

grc Terminal Control (backspace, linefeed, newline)
ars Time Stamp

OWA Workspace Available

Chapter 6 System Functions & Variables

323

System Functions

System functions provide various services related to both the APL and the external
environment. System functions have distinguished names beginning with the [
symbol. They are implicitly available in a clear workspace.

The following Figure identifies system functions divided into relevant categories. Each
function is described in alphabetical order in this chapter

System Commands

These functions closely emulate system commands (see Chapter 6)

Name Description

(CLEAR Clear workspace (WS)

dcy Copy objects into active WS
gex Expunge objects

(LoAD Load a saved WS

ONL Name List

(OFF End the session

OSAVE Save the active WS

External Environment

These functions provide access to the the external environment, such as file systems,
Operating System facilities, and input/output devices.

Name Description

OARBIN Arbitrary Input

OARBOUT Arbitrary Output

gcMp Execute the Windows Command Processor or another program
dcmb Start a Windows AP

OMAP Map a file

ONA Declare a DLL function

OSH Execute a UNIX command or another program

0SH Start a UNIX AP

324 Dyalog APL/W Language Reference

Defined Functions and Operators

These functions provide services related to defined functions and operators.

Name Description

OAT Object Attributes

Ocr Canonical Representation
gcs Change Space

gdeb Edit one or more objects
OEXPORT Export objects

OF X Fix definition

gdLock Lock a function

(OMONITOR Monitor set
OMONITOR Monitor query

ONR Nested Representation
ONS Create Namespace
0OoR Object Representation
OPATH Search Path
OREFS Local References
OSHADOW Shadow names
gsTop Set Stop vector
gsTop Query Stop vector
OTHIS This Space
OTRACE Set Trace vector
OTRACE Query Trace vector
OVR Vector Representation
Error Trapping
These functions are associated with event trapping and the system variable JTRAP.
Name Description
0eM Event Messages

OSIGNAL Signal event

Chapter 6 System Functions & Variables 325

Shared Variables

These functions provide the means to communicate between APL tasks and with other
applications.

Name Description

gsvc Set access Control

gsvc Query access Control

gdsvo Shared Variable Offer
gsvo Query degree of coupling
gsvaQ Shared Variable Query
Odsvr Retract offer

gsvs Query Shared Variable State

Object Oriented Programming

These functions provide object oriented programming features.

Name Description
[OBASE Base Class
[OCLASS Class

doF Display Formct
OFIxX Fix
OJINSTANCES | Instances
ONEW New Instance
(SrRcC Source

OTHIS This

Graphical User Interface

These functions provide access to GUI components.

Name Description

aoQ Await and process events
ONQ Place an event on the Queue
dwc Create GUI object

awe Get GUI object properties
OWN Query GUI object Names
aws Set GUI object properties
OwX Expose GUI property names

326

Dyalog APL/W Language Reference

External Variables

These functions are associated with using external variables.

Name Description

OxT Associate External variable
OXT Query External variable
OFHOLD External variable Hold

Component Files

The functions provide the means to store and retrieve data on APL Component Files.
See User Guide for further details.

Name Description

OFAPPEND Append a component to File
OFAVAIL File system Availability
gdFcorPyY Copy a File

OFCREATE Create a File

(OFDROP Drop a block of components
OFERASE Erase a File

OFHOLD File Hold

OFLIB List File Library

OFNAMES Names of tied Files

OF NUMS Tie Numbers of tied Files
OFPROPS File Properties

OFRDAC Read File Access matrix
OFRDCI Read Component Information
OFREAD Read a component from File
OFRENAME Rename a File
OFREPLACE Replace a component on File
OFRESIZE File Resize

OFSIZE File Size

OFSTAC Set File Access matrix
OFSTIE Share-Tie a File

OFTIE Tie a File exclusively
OFUNTIE Untie Files

Chapter 6 System Functions & Variables

327

Native Files

The functions provide the means to store and retrieve data on native files.

Name Description
ONAPPEND Append to File
ONCREATE Create a File
[ONERASE Erase a File
ONLOCK Lock a region of a file
ONNAMES Names of tied Files
ONNUMS Tie Numbers of tied Files
ONREAD Read from File
ONRENAME Rename a File
ONREPLACE | Replace data on File
ONRESIZE File Resize
ONSIZE File Size
ONTIE Tie a File exclusively
ONUNTIE Untie Files
ONXLATE Specify Translation Table
Threads
These functions are associated with threads created using the Spawn operator (&).
Name Description
OTGET Get Tokens
gTIo Current Thread Identity
OTCNUMS Thread Child Numbers
OTKILL Kill Threads
OTNAME Current Thread Name
OTNUMS Thread Numbers
dTpPooOL Token Pool
aTpPuT Put Tokens
OTREQ Token Requests
OTSYNC Wait for Threads to Terminate

328 Dyalog APL/W Language Reference

Miscellaneous

These functions provide various miscellaneous services.

Name

Description

OAVU
0oL
(oM
OFMT
OFMT
OkL
0NC
ONSI
OPFKEY
0s1I
OSIZE
0srR
OSTACK
OSTATE
gucs
OVFI
OXxsI

Atomic Vestor - Unicode
Delay execution
Diagnostic Message
Resolve display

Format array

Key Labels

Name Classification
Namespace Indicator
Programmable Function Keys
State Indicator

Size of objects

Screen Read

Report Stack

Return State of an object
Unicode Convert

Verify and Fix numerics
Extended State Indicator

Chapter 6 System Functions & Variables 329

Programming Reference A-Z

There follows an alphabetical list of system functions and variables which are
available in any Dyalog APL workspace. Apart from quote-quad ([J) below, their
names all begin with the quad symbol ([).

Character Input/Output: W

[] is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [] is assigned with a vector or a scalar, the array is displayed without the normal
ending new-line character. Successive assignments of vectors or scalars to [] without
any intervening input or output cause the arrays to be displayed on the same output
line.

Example

[<'2+2' o [J«'=" o [D«4
2+2=4

Output through [] is independent of the print width in JPW. The way in which lines
exceeding the print width of the terminal is treated is dependent on the characteristics
of the terminal. Numeric output is formatted in the same manner as direct output (see
Display of Arrays in Chapter 1).

When [] is assigned with a higher-order array, the output is displayed in the same
manner as for direct output except that the print width (PW is ignored.

When [] is referenced, terminal input is expected without any specific prompt, and the
response is returned as a character vector.

If the [] request was preceded by one or more assignments to [] without any intervening
input or output, the last (or only) line of the output characters are returned as part of the
response.

Example
ma t«+¢[0000

330

Dyalog APL/W Language Reference

Examples

[J«'OPTION : ' o R<l
OPTION : INPUT

R
OPTION : INPUT

PR
14

The output of simple arrays of rank greater than 1 through [] includes a new-line
character at the end of each line. Input through [] includes the preceding output
through [since the last new-line character. The result from [], including the prior
output, is limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while [] is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R<[]
(Interrupt)
INPUT INTERRUPT

A time limit is imposed on input through [] if RTL is set to a non-zero value:
ORTL«5 ¢ [J«'PASSWORD ? ' ¢ R+l
PASSWORD ?

TIMEOUT
ORTL«5 ¢ [J«'PASSWORD : ' ¢ R<[]
A

The TIMEOUT interrupt is a trappable event.

Chapter 6 System Functions & Variables 331

Evaluated Input/Output: 0

0 is a variable which communicates between the users terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [J is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see Display of Arrays in Chapter 1).

Example

O«2+15
345 67

0«2 4p'WINEMART'
WINE
MART

When [J is referenced, a prompt (0 :) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
OTRAP definition) and the prompt ([:) is again displayed for input. An EOF interrupt
reports INPUT INTERRUPT and the prompt (:) is again displayed for input. A soft
interrupt is ignored and a hard interrupt reports INTERRUPT and the prompt (0) is
redisplayed for input.

Examples
10x[+2
O:
13
30 40 50
2+[]
0O:
X
VALUE ERROR
X
A
0O:
2+13

567

332

Dyalog APL/W Language Reference

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

p3,0
JWSID
WS/MYWORK
O:
)SI
0
O:
JCLEAR
CLEAR WS

If the response to a [J: prompt is an abort statement (=), the execution will be aborted:
123=10

-

A trap definition on interrupt events set for the system variable JTRAP in the range
1000-1006 has no effect whilst awaiting input in response to a [J: prompt.

Example
OTRAP«(11 'C' "''ERROR''')(1000 'C' "''STOP''"')
2+[]
(Interrupt Signal)
INTERRUPT
O:
'C'+2
ERROR

A time limit set in system variable JRTL has no effect whilst awaiting input in
response to a []: prompt.

Chapter 6 System Functions & Variables 333

Underscored Alphabetic Characters: R«[A

[JA is a deprecated feature. Dyalog strongly recommends that you move away from
the use of [JA and of the underscored alphabet itself, as these symbols now constitute
the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, [1A was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was in
use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier

OA
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

For compatibility with previous versions of Dyalog APL, functions that contain
references to [JA will continue to return characters with the same index in [JAV as
before. However, the display of [JA is now A, and the old underscored symbols appear
as they did in previous Versions when the Dyalog Alt font was in use.

Current Version
0A

N\ Aee

AAACEEETTITPOOOOUNOYPE1506

Alphabetic Characters: R<[JA

This is a simple character vector, composed of the letters of the alphabet.

Example

OA
ABCDEFGHIJKLMNOPQRSTUVWXYZ

334 Dyalog APL/W Language Reference

Account Information: R«[JAI

This is a simple integer vector, whose four elements are:

OAI[1] - user identification.
Under Windows, this is the ap1lnid (network ID from
configuration dialog box).Under UNIX and LINUX, this is the
UID of the account.

OAI[2] - compute time for the APL session in milliseconds.
OAI[3] - connect time for the APL session in milliseconds.
OAI[4] - keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example

0AI
52 7396 2924216 2814831

Account Name: R<[JAN

This is a simple character vector containing the user (login) name.

Example

OAN
Pete

pOAN

Chapter 6 System Functions & Variables 335

Arbitrary Input: R«{X}OJARBIN Y

This transmits the prompt Y to an output device specified by X prior to reading from an
input device specified by X.

Under Windows, the use of JARBIN to the screen or in conjunction with RS232 ports
is not supported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Y must each be a character, or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard JAV to ASCII translation. IfY is an empty vector, no codes are sent to the
output device.
X may take several forms:

terminate (input output) JARBIN prompt

terminate input OARBIN prompt

terminate OARBIN prompt

OARBIN prompt

Each of these elements is discussed separately.

<terminate>

This defines how the read should be terminated.

If it is omitted, the read terminates on receipt of a Newline character.

If supplied, it must be a simple numeric scalar or vector.

e Ifitis a numeric scalar, it defines the number of characters to be read.
e Ifitis a numeric vector, it defines a set of terminating characters.

e Ifit is the null vector, the read terminates on Newline.

336

Dyalog APL/W Language Reference

<input>

This defines the input device.
If this is omitted, input is taken from standard input (usually the keyboard).
If supplied, it must be a simple numeric scalar or a simple text vector.

e Ifitis a numeric scalar, it must correspond to a DOS handle or UNIX stream
number.

e Ifitis a text vector, it must correspond to a valid device or file name.
You must have permission to read from the chosen device.

<output>

This defines the output device.

If this is omitted, output is sent to standard output (usually the screen).
If supplied, it must be a simple numeric scalar or a simple text vector.

e [fitis a numeric scalar, it must correspond to a DOS handle or UNIX stream
number.

o [fitis atext vector, it must correspond to a valid device or file name.
Y ou must have permission to write to the chosen device.

The result R is a simple numeric vector. Each item of R is the numeric representation
of an 8-bit code in the range 0 to 255 received from the input device. The meaning of
the code is dependent on the characteristics of the input device. If a set of delimiters
was defined by <terminate>, the last code returned will belong to that set.

ORTL (Response Time Limit) is an implicit argument of JARBIN. This allows a time
limit to be imposed on input. If the time limit is reached, JARBIN returns with the
codes read up to that point.

Chapter 6 System Functions & Variables 337

Examples

Write HELLO on the screen, and read a line of input
from the keyboard:

R « OARBIN 'HELLO'

Beep three times, send ARE YOU AWAKE? to the screen and wait for a 1 character
answer from the keyboard:

R « 1 JARBIN 7 7 7 'ARE YOU AWAKE (Y/N)'
Read a line from MYFILE:

R« '' 'MYFILE' OARBIN "'
Read MYFILE until a SPACE (code 32):

R « (,32) 'MYFILE' [ARBIN "'
Read MYFILE until a SPACE (code 32) or a TAB (code 9):

R « (32 9) 'MYFILE' [ARBIN "'

Write HELLO on /dev/ttyl (a UNIX terminal screen), then read a line from /dev/ttyl (a
UNIX terminal keyboard):

R« ''" ('/dev/ttyl' '/dev/tty1l') [JARBIN 'HELLO'

Write TITLE to LPT1 (a DOS printer device), then read from COM1 (a DOS serial
port) up to the first NEWLINE character:

R <« (,13) ('coM1' 'LPT1') [JARBIN 'TITLE'
Read 100 characters from COM1; timeout after 10 secs:

ORTL<«10
R<«100 'COM1' [JARBIN ''
¢(100#pR)/"'"''Read timed out'''

Read until DELIM from COM1; timeout after 10 secs:

ORTL«10
R«(,DELIM) 'CcOM1' [ARBIN ''
¢ (DELIM#"11R)/"'''Read timed out'"''

338 Dyalog APL/W Language Reference

Arbitrary Output: {X}OARBOUT Y

This transmits Y to an output device specified by X.
Under Windows, the use of JARBOUT to the screen or to RS232 ports is not supported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Y must each be a character or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard [JAV to ASCII translation. IfY is an empty vector, no codes are sent to the
output device.

X defines the output device. If X is omitted, output is sent to standard output (usually
the screen). If X is supplied, it must be a simple numeric scalar or a simple text vector.

If it is a numeric scalar, it must correspond to a DOS handle or UNIX stream number.
If it is a text vector, it must correspond to a valid device or file name.

You must have permission to write to the chosen device.

Examples
Write ASCII digits '123 " to UNIX stream 9:

9 [JARBOUT 49 50 51
Write ASCII characters ' ABC' to MYFILE:
'"MYFILE' [JARBOUT 'ABC'
Beep 3 times:
OARBOUT 7 7 7
Prompt for input:

O« 'Prompt: ' ¢ [arbout 12 ¢ ans<[]

Chapter 6 System Functions & Variables 339

Attributes: R«{X}OAT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it returns
information that is more appropriate for Dyalog APL.

Monadic Use

If X is omitted, R is a 4 column matrix with the same number of rows as functions in Y
containing the following attribute information:

R[:1] Each item is a 3-element integer vector representing the function
header syntax:

Item[1] result:
0 - Noresult
1 - Explicit result
~1 - Shyresult

Item[2] Function valence:
0 - Niladic function
1 - Monadic function
2 - Dyadic function
~2 - Ambivalent function

Item[3] Operator valence
0 - Not an operator
1 - Monadic operator
2 - Dyadic operator

The following values correspond to the syntax shown alongside:

0 0 O vV FOO

1 0 O vV Z«+FOO

1 0 O v {Z}«FOO

072 O v {A} FOO B
11 2 v {Z}«(F OP G)B

340 Dyalog APL/W Language Reference

R[;2] Each item is the (OTS form) timestamp of the time the function was
last fixed.
R[;3] Each item is an integer reporting the current [JLOCK state of the
function:
0 - Not locked
1 - Cannot display function
2 - Cannot suspend function
3 - Cannot display or suspend.

R[:4] Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example
V {z}«{1}(fn myop)r
[1] v
V z«<foo
[1]
v z«<{larg}util rarg
[1] cen
[JLOCK ' foo'
util2«util
DISPLAY [OAT 'myop' 'foo' 'util' 'util2'
J T S ->—-——

| 171 ~2 1] 11996 8 2 2 13 56 0] 0 |john]

| ~—————— ~ e _————

| > = e
I Ve — L |_|
| J>———-- . i >——

| 11 2 0] [1996 3 1 14 12 10 0] O |pete|

1 1
~————— e ————— ———————— -

Chapter 6 System Functions & Variables 341

Dyadic Use

The dyadic form of JAT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as possible.

If Y specifies a single name, the result R is a vector. If Y specifies more than one name,
R is a matrix with one row per name in Y. The number of elements (columns) and their
meaning depends upon the value of X which may be 1, 2, 3 or 4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 | Explicit result 1 if the object has an explicit result or is a
variable; 0 otherwise

2 | Function valence | 0 if the object is a niladic function or not a
function

1 if the object is a monadic function

2 if the object is an ambivalent function

3 | Operator valence | O if the object is not an operator

1 if the object is a monadic operator

2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

Year
Month

Day

Hour

Minute

Second

N[N B W]~

Milliseconds (this is always reported as 0)

342 Dyalog APL/W Language Reference

If X is 3, R specifies execution properties and contains 4 elements (or columns) whose

meaning is as follows:

1 | Displayable

0 if the object is displayable
1 if the object is not displayable

2 | Suspendable

0 if execution will suspend in the object

1 if execution will not suspend in the object

3 | Weak Interrupt
behaviour

0 if the object responds to interrupt

1 if the object ignores interrupt

(always 0)

Note that the execution properties for primitive and system functionsare 0 1 1 O.

If X is 4, R specifies object size and contains 2 elements (or columns) which both report

the SIZE of the object.

Chapter 6 System Functions & Variables 343

Atomic Vector:

R«[JAV

[AV is a deprecated feature and is replaced by [JUCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL
character.

In the Classic Edition the contents of [JAV are defined by the Output Translate Table.

In the Unicode Edition, the contents of [JAV are defined by the system variable JAVU.

Examples

OAV[48+110]

0123456789

%'ow_abcdefghijklimnopgrstuvwxyz_ TXQ012§&59189*5¥$§¢
AABCDEFGHIJKLMNOPQRSTUVWXYZ _y -OAAAACEEEIIIIHOOO0OUUU
Ypai306{€}-[AAAE=ENOPURASAFa2ceE88 7T TAL/A\\<s=2>2vA
-++x?2€p~ TilO*rLVO(CDQULTl,,VAVAQ¢9®E|$g§;5¢666¢"#_&'

@UUG G [9: e io«>n) JONSON*% ' aw_abcdefghi jk

5 52p12ifav

Atomic Vector - Unicode: OAVU

OAVU specifies the contents of the atomic vector, [JAV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example

when:

Unicode Edition loads or copies a Classic Edition workspace or a workspace
saved by a Version prior to Version 12.0.

Unicode Edition reads character data from a non-Unicode component file, or
receives data type 82 from a TCP socket.

Unicode Edition writes data to a non-Unicode component file

Unicode Edition reads or writes data from or to a Native File using conversion
code 82.

Classic Edition loads or copies a Unicode Edition workspace

Classic Edition reads character data from a Unicode component file, or
receives data type 80, 160, or 320 from a TCP socket.

Classic Edition writes data to a Unicode component file.

0AVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in [JAV.

344

Dyalog APL/W Language Reference

Note

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, JAV. When a character is displayed
or printed, the index in JAV is translated to a number in the range 0-255 which
represents the index of the character in an Extended ASCII font. This mapping is done
by the Output Translate Table which is user-configurable. Note that although ASCII
fonts typically all contain the same symbols in the range 0-127, there are a number of
different Extended ASCII font layouts, including proprietary APL fonts, which provide
different symbols in positions 128-255. The actual symbol that appears on the screen or
on the printed page is therefore a function of the Output Translate Table and the font in
use. Classic Edition provides two different fonts (and thus two different [JAV layouts)
for use with the Development Environment, named Dyalog Std (with APL underscores)
and Dyalog Alt (without APL underscores

The default value of JAVU corresponds to the use of the Dyalog Alt Output Translate
Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13p0AVU[97+126]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
gucs 2 13p[AVU[97+126]
E1fiied

GEEE
000Ypai508

o m

Rige
oouu

O >

OAVU has namespace scope and can be localised, in order to make it straightforward to
write access functions which receive or read data from systems with varying atomic
vectors. If you have been using Dyalog Alt for most things but have some older code
which uses underscores, you can bring this code together in the same workspace and
have it all look “as it should” by using the Alt and Std definitions for JAVU as you
copy each part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.[JAVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

2 13p[AVU[97+126]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
9422 9423

gucs 2 13p[AVU[97+126]
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

Chapter 6 System Functions & Variables 345

Rules for Conversion on Import

When the Unicode Edition imports APL objects from a non-Unicode source, function
comments and character data of type 82 are converted to Unicode. When the Classic
Edition imports APL objects from a Unicode source, this translation is performed in
reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a
workspace that contains its own value of JAVU) the value of #.[JAVU (the value of
[AVU in the root) in the source workspace is used. Otherwise, such as when APL
objects are imported from a pre-Version 12 workspace, from a component file, or from
a TCP socket, the local value of JAVU in the farget workspace is used.

Rules for Conversion on Export

When the Unicode Edition exports APL objects to a non-Unicode destination, such as a
non-Unicode Component File or non-Unicode TCPSocket Object, function comments
(in 0ORs) and character data of type 82 are converted to JAV indices using the local
value of JAVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in [JORs)
and character data of type 82 are converted to Unicode using the local value of JAVU.

In all cases, if a character to be translated is not defined in [JAVU, a TRANSLATION
ERROR (event number 92) will be signalled.

Base Class: R<[JBASE.Y

[BASE is used to access the base class implementation of the name specified by Y.

Y must be the name of a Public member (Method, Field or Property) that is provided by
the Base Class of the current Class or Instance.

OBASE is typically used to call a method in the Base Class which has been superseded
by a Method in the current Class.

Note that (JBASE .Y is special syntax and any direct reference to [IBASE on its own or
in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot and
supersedes its Speak method. DomesticParrot.Speak calls the Speak method
in its Base Class Parrot, via[IBASE.

346 Dyalog APL/W Language Reference

:Class Parrot: Bird
V R«Speak
:Access Public
R«<'Squark!’
\%
:EndClass A Parrot

:Class DomesticParrot: Parrot
V R«Speak
tAccess Public
R«<[JBASE.Speak,' Who's a pretty boy,then!’
v
:EndClass A DomesticParrot

Maccaw<[JNEW Parrot
Maccaw.Speak
Squark!

Pol1ly<[INEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy,then!

Class:

R«{X}OCLASS Y

Monadic Case
Monadic JCLASS returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.

R is a vector or vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

Chapter 6 System Functions & Variables 347

:Class Animal
;éﬁdC]ass A Animal
:Class Bird: Animal
:EndClass A Bird
:Class Parrot: Bird

;éﬁd01ass A Parrot

[OCLASS Eeyore<«[NEW Animal
#.Animal

[OCLASS Robin<«[INEW Bird
#.8Bird #.Animal

[OCLASS Pol1y<«[INEW Parrot
#.Parrot #.8Bird #.Animal

[(OCLASS™ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

Example 2

The Penguin Class Class example (see page 164) illustrates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby inheriting
members from both.

Pingo<«[JNEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case

If X is specified, Y must be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y,and is used as a cast in order to
access members of Y that correspond to members of Interface of (Base) Class X.

348

Dyalog APL/W Language Reference

Example 1:

Once again, the Penguin Class example (see page 164) is used to illustrate the use of
Interfaces.

Pingo<«[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [JCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [JCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [JCLASS Pingo).Sing
Croak, Croak!

Example 2:

This example illustrates the use of dyadic [JCLASS to cast an Instance to a lower Class
and thereby access a member in the lower Class that has been superseded by another
Class higher in the tree.

Pol11y<«[JNEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy,then!

Note that the Speak method invoked above is the Speak method defined by Class
DomesticParrot, which supersedes the Speak methods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes
Parrot and Bird.

(Parrot [CLASS Polly).Speak
Squark!

(Bird [OCLASS Polly).Speak
Tweet, tweet!

Chapter 6 System Functions & Variables 349

Clear Workspace: OCLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace is
lost. All system variables assume their default values. The maximum size of
workspace is available.

The contents of the session namespace [JSE are not affected.

Example

OCLEAR
OwsID
CLEAR WS

Execute Windows Command: R<[JCMD Y

[0CMD executes a Windows Command Processor or UNIX shell or starts another
Windows application program. [JCMD is a synonym of [JSH. Either system function
may be used in either environment (Windows or UNIX) with exactly the same effect.
[CMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and [JSH under Windows. See [JSH for a discussion of the
behaviour of these system functions under UNIX.

The system commands) CMD and) SH provide similar facilities but may only be
executed from the APL Session.

Executing a Windows Command

If'Y is a simple character vector, JCMD invokes the Windows Command Processor
(normally cmd . exe) and passes Y to it for execution. R is a vector of character
vectors containing the result of the command. Each element in R corresponds to a line
of output produced by the command.

Example

Z<[JCMD'DIR"
pZ

350

Dyalog APL/W Language Reference

A

Volume in drive C has no label
Directory of C:\DYALOG

<DIR> 5-07-89 3.02p
.. <DIR> 5-07-89 3.02p
SALES DWS 110092 5-07-89 3.29p
EXPENSES DWS 154207 5-07-89 3.29p

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. If the command specified
by Y issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
input and output to the console. If this is done, APL detects the presence of a ">" in
the command line, runs the command processor in a visible window, and does not
direct output to the pipe. If you fail to do this your system will appear to hang because
there is no mechanism for you to receive or respond to the prompt.

Example

(OCMD 'DATE <CON >CON'
(Command Prompt window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95
(COMMAND PROMPT window disappears)

Implementation Notes

The right argument of [JCMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, JCMD will execute the string ('cmd.exe /c',Y); where Y is the
argument given to [JCMD. However, the implementation permits the use of alternative
command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by "/c". If COMSPEC is
not defined, it defaults to cmd . exe. If CMD_POSTFIX is not defined, it defaults to
an empty vector.

Chapter 6 System Functions & Variables 351

[JCMD treats certain characters as having special meaning as follows:

marks the start of a trailing comment,

H divides the command into sub-commands,

> if found within the last sub-command, causes [JCMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the
command as a Windows Program (see below). For example:

OcMD 'cmd.exe' ''

Executing a Windows Program

IfY is a 2-element vector of character vectors, [JCMD starts the executable program
named by Y[1] with the initial window parameter specified by Y[2]. The shy result
is an integer scalar containing the window handle allocated by the window manager.

Y [1] must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories :

the current directory,

the Windows directory,

the Windows system directory,

the directories specified by the PATH variable,
the list of directories mapped in a network.

Nk WD =

Note that Y[1] may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
0CMD will fail and report FILE ERROR 2.

Y[2] specifies the window parameter and may be one of the following. If not, a
DOMAIN ERROR is reported.

"Normal' Application is started in a normal window, which is given the
' input focus

‘Unfocused"’ Application is started in a normal window, which is NOT given
the input focus

'Hidden' Application is run in an invisible window

'‘Minimized' Application is started as an icon which is NOT given the input
'Minimised' | focu

'Maximized' Application is started maximized (full screen) and is given the

'Maximised' | input focus

352

Dyalog APL/W Language Reference

An application started by JCMD may ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, if the window parameter is
HIDDEN, the user is unaware of the application (unless it makes itself visible) and has
no means to close it.

Examples

Path«'c:\Program Files\Microsoft Office\Office\’
O0<dcMD (Path, 'excel.exe') "'

33
(OcMD (Path, 'winword /mMyMacro') 'Minimized’

Start Windows Auxiliary Processor: X OCMD Y

Used dyadically, [JCMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both Windows and UNIX, although the
method of implementation differs. [JCMD is a synonym of JSH. Either function may

be used in either environment (Windows or UNIX) with exactly the same effect. [JCMD
is probably more natural for the Windows user. This section describes the behaviour of
0OCMD and [OSH under Windows. See [JSH for a discussion of the behaviour of these
system functions under UNIX.

X must be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Y may be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

OCMD loads the Auxiliary Processor into memory. If no other APs are currently
running, [JCMD also allocates an area of memory for communication between APL and
its APs.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same way
as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are passed
to the AP for processing via the communications area described above. APL halts
whilst the AP is processing, and waits for a result. Under Windows, unlike under
UNIX, it is not possible for external functions to run in parallel with APL.

Chapter 6 System Functions & Variables 353

Canonical Representation: R<[CR Y

Y must be a simple character scalar or vector which represents the name of a defined
function or operator.

If Y is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading indentation
of control structures, trailing blanks that pad each row, and the blanks in comments. If
Y is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty matrix whose shape is 0 0.

Example

VR<MEAN X A Arithmetic mean
[1] R«(+/X)+pX
[2] v

+F<[CR"'MEAN"
R«<MEAN X A Arithmetic mean
Re(+/X)+pX

pF
2 30

The definition of [JCR has been extended to names assigned to functions by
specification («), and to local names of functions used as operands to defined
operators.

If Y is a name assigned to a primitive function, R is a one-element vector containing the
corresponding function symbol. If Y is a name assigned to a system function, R is a
one element nested array containing the name of the system function.

Examples
PLUS«+
+F<[JCR'PLUS"
pF
c<[Cr
c'c'

dcr

pc'C'

354

Dyalog APL/W Language Reference

VR<CONDITION (FN1 ELSE FN2) X
[1] ~>CONDITION/L1
[2] R«FN2 X ¢ =0
[3] L1:R«FN1 X
(41 v

2 [JSTOP 'ELSE'
(X20) | ELSE [X«~2.5

ELSE[2]
X

T2.5

: OCR'FN2'
~{LC

"2

If Y is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent
functions are represented by their own [JCRs, so in this respect the definition of [JCR is
recursive. Primitive operators are treated like primitive functions, and are represented
by their corresponding symbols. Arrays are represented by themselves.

Example
BOX<«2 20p
+F<[JCR'BOX"
2 2 op
pF
3
DISPLAY F
| .>--. I
| 12 2] = p |
| oo
€mmmm e

If Y is a name assigned to a defined function, R is the [JCR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example

AVERAGE<MEAN
OCR'AVERAGE'
R«MEAN X A Arithmetic mean
Re(+/X)+pX

Chapter 6 System Functions & Variables 355

Change Space: {R}<«{X}OCS Y

Y must be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of character
vectors identifying zero or more workspace objects to be exported into the namespace
Y.

The identifiers in X and Y may be simple names or compound names separated by ' . '
and including the names of the special namespaces '[JSE "', '#"', "##' and ' '.

The result R is the full name (starting "#. ") of the space in which the function or
operator was executing prior to the [JCS.

0CS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously
running, as a shy result. After the [ICS, references to global names (with the exception
of those specified in X) are taken to be references to global names in Y. References to
local names (i.e. those local to the current function or operator) are unaffected.

When the function or operator terminates, the calling function resumes execution in its
original space.

The names listed in X are temporarily exported to the namespace Y. If objects with the
same name exist in Y , these objects are effectively shadowed and are inaccessible.

Note that calling [JCS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how [JCS may be used to avoid typing long pathnames
when building a tree of GUI objects. Note that the objects NEW and OPEN are created
as children of the FILE menu as a result of using [JCS to change into the F .MB.FILE
namespace.

356

Dyalog APL/W Language Reference

v MAKE_FORM;F;OLD
[1] '"F'OWC'Form'
[2] '"F.MB'[OWC'MenuBar'
E3% '"F.MB.FILE'[JWC'Menu' '&File'
4
[5] OLD<[CS'F.MB.FILE"
[6] "NEW'[OWC 'MenuItem' '&New'
[7] 'OPEN'[WC'MenuItem' '&0Open'
[8] (cs oLD
[9]
EiO% '"F.MB.EDIT'OWC'Menu' '&Edit'
11
[12] oLD<[JCS'F.MB.EDIT'
[13] "UNDO'[OJWC'MenulItem' '&Undo’
[14] 'REDO'[OWC'Menultem' '&Redo’
[15] (dcs oLD
[16]

\4
Example

Suppose a form F 1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the form maintains a count of the total

number of button presses. The single callback function PRESS and its subfunction FMT
can reside in the form itself

#.F1

)CS F1

A Note that both instances reference
A the same callback function
'B1'[IWS'Event' 'Select' 'PRESS'
'B2'[OWS'Event' 'Select' 'PRESS'

A Initialise total and instance counts.
TOTAL <« B1.COUNT <« B2.COUNT <« O

PRESS MSG

"FMT TOTAL '0CS5MSG n Switch to instance space
(TOTAL COUNT)++«1 A Incr total & instance count
OWS'Caption' (COUNT FMT TOTAL)A Set instance caption

CAPT«INST FMT TOTL A Format button caption.
CAPT«(3INST),'/',sTOTL A E.g. 40/100.

Chapter 6 System Functions & Variables 357

Example

This example uses [ICS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

V tabs tree space;subs A Display namespace tree
[1] tabs,space
[2] ‘tree'llCS space
[3] >(psubs<«{[NL 9)10
(4] (tabs,'. ')otree subs
v
)ns X.y
#.x.y
)ns z
#.z
""tree '#'
#
. X
. Y
z
Comparison Tolerance: OCT

The value of [JCT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if:

(IX=Y)<OCTx(IX)[|Y where < is applied without tolerance.

OCT may be assigned any value in the range from 0 to 16*~8. A value of O ensures
exact comparison. The value in a clear workspace is 1E7 1 4.

0CT is an implicit argument of the monadic primitive functions Ceiling ([), Floor (|)
and Unique (v), and of the dyadic functions Equal (=), Excluding (~), Find (P), Greater
(>), Greater or Equal (2), Index of (1), Intersection (n), Less (<), Less or Equal (<),
Match (=), Membership (€), Not Match (#), Not Equal (#), Residue (|) and Union (v),
as well as JFMT O-format.

Examples

OCT«1E~10
1.00000000001 1.0000001 = 1
10

358

Dyalog APL/W Language Reference

Copy Workspace: {X}dcy Yy

Y must be a simple character scalar or vector identifying a saved workspace. X is
optional. If present, it must be a simple character scalar, vector or matrix. A scalar or
vector is treated as a single row matrix. Each (implied) row of X is interpreted as an
APL name.

Each (implied) row of X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that
workspace are implied (defined functions and operators, variables, labels and
namespaces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the object
can be copied. A copied label is re-defined to be a variable of numeric type. If the
name of the copied object has an active referent in the active workspace, the name is
disassociated from its value and the copied object becomes the active referent to that
name. In particular, a function in the state indicator which is disassociated may be
executed whilst it remains in the state indicator, but it ceases to exist for other
purposes, such as editing.

You may copy an object from a namespace by specifying its full pathname. The object
will be copied to the current namespace in the active workspace, losing its original
parent and gaining a new one in the process. You may only copy a GUI object into a
namespace that is a suitable parent for that object. For example, you could only copy a
Group object from a saved workspace if the current namespace in the active workspace
is itself a Form, SubForm or Group.

See) COPY for further information and, in particular, the manner in which dependant
objects are copied.

A DOMAIN ERROR is reported in any of the following cases:

1. Y isill-formed, or is not the name of a workspace with access authorised for the
active user account.

2. Any name in X is ill-formed.

3. An object named in X does not exist as an active object in workspace named in Y.

4. An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, ['CY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails conversion

between Unicode and [JAV indices, whether or not that object is specified by X. See
OAVU for further details.

Chapter 6 System Functions & Variables 359

A WS FULL is reported if the active workspace becomes full during the copying
process.

Example

OVR'FOO'
vV R«FOO
[1] R<10
v
'FOO' [CY 'BACKUP'
OVR'FOO'
V R«FOO0 X
(1] R«<10xX
v

System variables are copied if explicitly included in the left argument, but not if the left
argument is omitted.

Example
OLx

(2 3p'OLX X')OCY'WS/CRASH'
OLx
~RESTART

A copied object may have the same name as an object being executed. If so, the name
is disassociated from the existing object, but the existing object remains defined in the
workspace until its execution is completed.

Example

)SI
FOO[1]x

OVR'FOO'
vV R«FOO
[1] R«<10
v

"FOO'[ICY 'WS/MYWORK'

FOO
123

)SI
FOO[1]x

-~0LC
10

360 Dyalog APL/W Language Reference

Digits: R<[D

This is a simple character vector of the digits from 0 to 9.

Example

0o
0123456789

Display Form: R<[DF Y

0DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Y must be a simple character array that specifies the display form of a namespace. If
defined, this array will be returned by the format functions and [JFMT instead of the
default for the object in question. This also applies to the string that is displayed when
the name is referenced but not assigned (the default display).

The result R is the previous value of the Display Form which initially is ONULL.

"F'OWC'Form'
3F
#.F
psF
3
OFMT F
#.F
pOFMT F
13
F A default display uses 3
#.F
F.ODF 'Pete's Form'
3F
Pete's Form
p3sF
11
OFMT F
Pete's Form
pOFMT F

Chapter 6 System Functions & Variables 361

Notice that [(DF will accept any character array, but JFMT always returns a matrix.

F.ODF 2 2 5p0A
F

ABCDE

FGHIJ

KLMNO
PQRST
p3F
2 25
pO<0OFMT F
ABCDE
FGHIJ

KLMNO
PQRST
55

Note that [IDF defines the Display Form statically, rather than dynamically.

'F'OWC'Form' 'This is the Caption'’

F
#.F

F.(ODF Caption)a make current caption the display
form

F
This is the Caption

F.Caption«<'New Caption' A changing caption does not
change the display form

F

This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
vV Make arg
:Access Constructor
:Implements Constructor
0oF arg

v
tEndClass A MyClass
PD<[IJNEW MyClass 'Pete'

PD
Pete

362 Dyalog APL/W Language Reference

It is possible to set the Display Form for the Root and for JSE

JCLEAR
clear ws
#
#
OoF OWSID
#
CLEAR WS
0sEe
gse
OSeE.DF 'Session'
0se
Session

Note that [IDF applies directly to the object in question and is not automatically applied
in a hierarchical fashion.

leDNs ()
X
#.X
"Y'X.ONS '
X.Y
#.X.Y
X.ODF 'This is X'
X
This is X
X.Y

#.X.Y

Chapter 6 System Functions & Variables 363

Division Method: o1V

The value of DIV determines how division by zero is to be treated. If[JDIV=0,

division by 0 produces a DOMAIN ERROR except that the special case of 0+0 returns
1.

IfDIV=1, division by 0 returns 0.
ODIV may be assigned the value 0 or 1. The value in a clear workspace is 0.

(D1IV is an implicit argument of the monadic function Reciprocal (+) and the dyadic
function Divide (+).
Examples

OdpIv«o

102=+201
0.5 1 2

+0 1
DOMAIN ERROR
+0 1

A

ODIV«1

+0 2
0 0.5

102 +00%4
0 0 0.5

364 Dyalog APL/W Language Reference

Delay: {R}<[OL Y

Y must be a simple non-negative numeric scalar or one element vector. A pause of
approximately Y seconds is caused.

The shy result R is an integer scalar value indicating the length of the pause in seconds.

The pause may be interrupted by a strong interrupt.

Diagnostic Message: R<[IDM

This niladic function returns the last reported APL error as a three-element vector,
giving error message, line in error and position of caret pointer.

Example

2+0
DOMAIN ERROR
2+0

A

(oM
DOMAIN ERROR 2+0 A

Chapter 6 System Functions & Variables 365

Dequeue Events: {R}<[IDQ Y

[0DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, Filebox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects which
exist, but are not named in Y, are effectively disabled (do not respond to the user).

IfYis '."',all objects currently owned and subsequently created by the current thread
are included in the [JDQ. Note that because the Root object is owned by thread 0, events
on Root are reported only to thread 0.

If Y is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events are
to be processed. Effectively, this is the list of objects with which the user may interact.
A DOMAIN ERROR is reported if an element of Y refers to anything other than an
existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by JDQ. The "action" may
be a number with the value 0, 1 or 1, or a character vector containing the name of a
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

OBJ (WS 'Event' 'Select' 0

OBJ (WS 'Event' 'Select' 1

OBJ [OWS 'Event' 'Select' 'FOO'
OBJ (WS 'Event' 'Select' 'FOO' 10
OBJ (WS 'Event' 'Select' 'FOO&'

These are treated as follows :

366 Dyalog APL/W Language Reference

Action = O (the default)

0DQ performs "standard" processing appropriate to the object and type of
event. For example, the standard processing for a KeyPress event in an Edit
object is to action the keypress, i.e. to echo the character on the screen.

Action = 71

This disables the event. The "standard" processing appropriate to the object
and type of event is not performed, or in some cases is reversed. For
example, if the "action code" for a KeyPress event (22) is set to ~1, [IDQ
simply ignores all keystrokes for the object in question.

Action = 1

0DQ terminates and returns information pertaining to the event (the event
message in R as a nested vector whose first two elements are the name of the
object (that generated the event) and the event code. R may contain additional
elements depending upon the type of event that occurred.

Action = fn {larg}

f n is a character vector containing the name of a callback function. This
function is automatically invoked by 0DQ whenever the event occurs, and
prior to the standard processing for the event. The callback is supplied the
event message (see above) as its right argument, and, if specified, the array
larg as its left argument. If the callback function fails to return a result, or
returns the scalar value 1, [0DQ then performs the standard processing
appropriate to the object and type of event. If the callback function returns a
scalar 0, the standard processing is not performed or in some cases is
reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An
example would be the processing of a keystroke message where the callback
function substitutes upper case for lower case characters. The exact nature of
this processing is described in the reference section on each event type.

Action = gsexpr

If Action is set to a character vector whose first element is the execute
symbol (¢) the remaining string will be executed automatically whenever the
event occurs. The default processing for the event is performed first and may
not be changed or inhibited in any way.

Action = fn& {larg}

f n is a character vector containing the name of a callback function. The
function is executed in a new thread. The default processing for the event is
performed first and may not be changed or inhibited in any way.

Chapter 6 System Functions & Variables 367

0DQ terminates in one of four instances. Note that its result is shy.

Firstly, [IDQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object
Reference). However, an event message has at least two elements of which the first is
a character vector containing the name of the object, and the second is a numeric code
specifying the event type.

0DQ also terminates if all of the objects named in Y have been deleted. In this case, the
result is an empty character vector. Objects are deleted either using [JEX, or on exit
from a defined function or operator if the names are localised in the header, or on
closing a form using the system menu.

Thirdly, (0DQ terminates if the object named in its right argument is a special modal
object, such as aMsgBox, FileBox or Locator, and the user has finished
interacting with the object (e.g. by pressing an "OK" button). The return value of [JDQ
in this case depends on the action code of the event.

Finally, (DQ terminates with a VALUE ERROR if it attempts to execute a callback
function that is undefined.

368 Dyalog APL/W Language Reference

Data Representation (Monadic): R<[DR Y

Monadic [JDR returns the type of its argument Y. The result R is an integer scalar
containing one of the following values. Note that the internal representation and data
types for character data differs between the Unicode and Classic Editions.

Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer
160 16 bits character

163 16 bits signed integer
320 32 bits character

323 32 bits signed integer
326 32 bits Pointer

645 64 bits Floating

Unicode Edition

Value | Data Type

11 1 bit Boolean
82 8 bits character
83 8 bits signed integer

163 16 bits signed integer
323 32 bits signed integer
326 32 bits Pointer

645 64 bits Floating

Classic Edition

Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

Chapter 6 System Functions & Variables 369

Data Representation (Dyadic): R«<X [DR Y

Dyadic [JDR converts the data type of its argument Y according to the type specification
X. See monadic [JDR on the previous page for a list of data types.

Case 1:

X is a single integer value. The bits in the right argument are interpreted as elements of
an array of type X. The shape of the resulting new array will typically be changed along
the last axis. For example, a character array seen as Boolean will have 8 times as many
elements along the last axis.

Case 2:

X is a 2-element integer value. The bits in the right argument are interpreted as type
X[1]. The system then attempts to convert the elements of the resulting array to type
X[2] without loss of precision. The result R is a two element nested array comprised
of:

[1] The converted elements or a fill element (0 or blank) where the conversion
failed
[2] A Boolean array of the same shape indicating which elements were

successfully converted.

Case 3: Classic Edition Only

X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argument
are interpreted as elements of an array of type X[1]. The system then converts them to
the character representation of the corresponding 16 bit integers. This case is provided
primarily for compatibility with APL*PLUS. For new applications, the use of the
[conv] field with INAPPEND and [JNREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
ONXLATE 0. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace
compaction. For example, numeric arrays and (in the Unicode Edition) character arrays
will if possible, be squeezed to occupy the least possible amount of memory. However,
the internal representation of the result R is guaranteed to remain unmodified until it is
re-assigned (or partially re-assigned) with the result of any function.

370

Dyalog APL/W Language Reference

Edit Object: {R}«{X}OED Y

0ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many elements
as there are names in Y. Each element of X specifies the type of the corresponding
(new) object named in Y, where :

v function/operator

> simple character vector

€ vector of character vectors

- character matrix

® Namespace script

o Class script

° Interface

If an object named in Y already exists, the corresponding type specification in X is
ignored.

IfED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by [JED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using) ED.

IfJED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-screen"
mode (ZOOMED). In all implementations, the user is restricted to those windows
named in Y. The user may not skip to the Session even though the Session may be
visible

0ED terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been changed, and has the same structure as Y.

Chapter 6 System Functions & Variables 37

Event Message: R<[JEM Y

Y must be a simple non-negative integer scalar or vector of event codes. If Y is a
scalar, R is a simple character vector containing the associated event message. If Y is a
vector, R is a vector of character vectors containing the corresponding event messages.

If' Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".

Example

OeM 11
DOMAIN ERROR

Event Number: R<EN

This simple integer scalar reports the identification number for the most recent event
which occurred, caused by an APL action or by an interrupt or by the JSIGNAL
system function. Its value in a clear workspace is 0.

Exception: R«[JEXCEPTION

This is a system object that identifies the most recent Exception thrown by a Microsoft
.Net object.

OEXCEPTION derives from the Microsoft .Net class System.Exception. Among its
properties are the following, all of which are strings:

Source The name of the .Net namespace in which the exception was
generated

StackTrace The calling stack

Message The error message
OUSING«'System'
DT«DateTime.New 100000 0 O

EXCEPTION
DT«DateTime.New 100000 0 O

OEN
90

372

Dyalog APL/W Language Reference

JEXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

JEXCEPTION.Source
mscorlib

JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year, Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year, Int32 month,
Int32 day)

Expunge Object: {R}<EX Y

Y must be a simple character scalar, vector or matrix. A scalar or vector is treated as a
single row matrix. Each row of Y is interpreted as an APL name. R is a simple logical
vector with one element per row of Y.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that name.
A value of 0 is returned for an ill-formed name or for a distinguished name in Y. The
result is suppressed if not used or assigned.

Examples

OEX'VAR'

+JEX”'FOO' '0OI0" 'X' '123'
1 0 1 O

If a named object is being executed the existing value will continue to be used until its
execution is completed. However, the name becomes available immediately for other
use.

Chapter 6 System Functions & Variables 373

Examples
)SI
FOO[1]x
OVR'FOO'
VvV R«<FOO
[1] R«10
\
+[JEX'FOO'
1
)SI
FOO[1]x
vFoo[O]
defn error
FOO«1 2 3
-fLC
10
FOO
12 3

If a named object is an external variable, the external array is disassociated from the
name:

OXT'F'
FILES/COSTS
OeEX'F' o OXT'F'

If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression JEX' . ' deletes all objects owned by the
current thread except for the Root object itself. In addition, if this expression is
executed by thread 0, it resets all the properties of ' . "' to their default values.
Furthermore, any unprocessed events in the event queue are discarded.

If the named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

374

Dyalog APL/W Language Reference

Export Object: {R}<{X}OEXPORT Y

OEXPORT is used to set or query the export type of a defined function (or operator)
referenced by the [JPATH mechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

0 - not exported.
1 - exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the JPATH system variable, it examines the function’s export type:

0 This instance of the function is ignored and the search is resumed at the next
namespace in the JPATH list. Type-0 is typically used for functions residing
in a utility namespace which are not themselves utilities, for example the
private sub-function of a utility function.

1 This instance of the function is executed in the namespace in which is was
found and the search terminated. The effect is exactly as if the function had
been referenced by its full path name.

Warning: The left domain of JEXPORT may be extended in future to include extra
types 2, 3, ... (for example, to change the behaviour of the function). This means that,
while JEXPORT returns a boolean result in the first version, this may not be the case in
the future. If you need a boolean result, use 0# or an equivalent.

(020EXPORT On1 3 4)#0n1 3 4 @ list of exported
A functions and operators.

Chapter 6 System Functions & Variables 375

File Append Component: {R}«X OFAPPEND Y

Access code 8

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. X may be any array including, for example, the JOR of a
namespace.

The shy result R is the number of the component to which X is written, and is 1 greater
than the previously highest component number in the file, or 1 if the file is new.

Examples
(100071000) [FAPPEND 1

O«(2 3p16) 'Geoff' (OOR'FOO') [FAPPEND 1

12
O«A B C OFAPPEND™1
13 14 15
Dump<«{
tie«o [JFCREATE O A create file.
) (OFUNTIE tie){}w OFAPPEND tie m append and untie.

File System Available: R<[JFAVAIL

This niladic function returns the boolean value 1 unless the component file system is
unavailable for some reason, in which case it returns 0. If[JFAVAIL does return 0,
most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE

See User Guide for further details.

376

Dyalog APL/W Language Reference

File Copy:

R<X [OFCOPY Y

Access Code: 4609

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie
number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

OF COPY creates a copy of the tied file specified by Y, named X. The new file X will be
a 64-bit file, but will otherwise be identical to the original file. In particular all
component level information, including the user number and update time, will be the
same. The operating system file creation, modification and access times will be set to
the time at which the copy occurred.

The result R is the file tie number associated with the new file X.

Example

told«<'oldfile32'OFTIE O
'S' OFPROPS told
32
tnew<«'newfileéb4' [FCOPY told

‘S' OFPROPS tnew
64

If X specifies the name of an existing file, the operation fails witha FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

Chapter 6 System Functions & Variables 377

File Create: {R}«X OFCREATE Y

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional address size. .

The file tie number must not be the tie number associated with another tied file.

The address size is an integer and may be either 32 or 64. A value of 32 causes the
internal component addresses to be represented by 32-bit values which allow a
maximum file size of 4GB. A value of 64 (the default) causes the internal component
addresses to be represented by 64-bit values which allows file sizes up to operating
system limits.

Note:
e a 32-bit component file may not contain Unicode character data.

e a 64-bit component file may not be accessed by versions of Dyalog APL prior
to Version 10.1.0

X must be either

a) asimple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Windows.
b) a vector of length 1 or 2 whose items are:
i. a simple character scalar or vector as above.
il. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of JF CREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:

tie<«1+[/0,0JFNUMS A With next available number,
file [OFCREATE tie A ... create file.

to:

tie<file [OFCREATE O A Create with first available..

378

Dyalog APL/W Language Reference

Examples
". .\BUDGET\SALES" [OFCREATE 2 A Windows
'../budget/SALES.85' [DFCREATE 2 A UNIX
"COSTS' 200000 [JFCREATE 4 A max size 200000
"LARGE' [JFCREATE 5 64 A 64-bit file
'SMALL' [FCREATE 6 32 A 32-bit file

File Drop Component: {R}<«[JFDROP Y

Access code 32

Y must be a simple integer vector of length 2 or 3 whose elements are:
[1] a file tie number

[2] anumber specifying the position and number of components to be dropped. A
positive value indicates that components are to be removed from the beginning of
the file; a negative value indicates that components are to be removed from the
end of the file

[3] an optional passnumber which if omitted is assumed to be zero

The shy result of a JFDROP is a vector of the numbers of the dropped components.
This is analogous to JF APPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,«vec [JFAPPEND 'tie A Append index to dictionary

cnos~«[JFDROP tie,-pvec A Remove index from dict.

Note that the result vector, though potentially large, is generated only on request.

Examples

OFSIZE 1
1 21 5436 4294967295

OFDROP 1 3 o OFSIZE 1
4 21 5436 4294967295

OFDROP 1 ~2 o QOFSIZE 1
4 19 5436 4294967295

Chapter 6 System Functions & Variables 379

File Erase: {R}«X OFERASE Y

Access code 4

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. X must be a character scalar or vector containing the name of the file associated
with the tie number Y. This name must be identical with the name used to tie the file,
and the file must be exclusively tied. The file named in X is erased and untied. See
User Guide for file naming conventions under UNIX and Windows.

The shy result of FERASE is the tie number of the erased file.

Examples
'SALES'JFERASE 'SALES' OFTIE O

‘./temp' [OFCREATE 1

'temp' [FERASE 1
FILE NAME ERROR

"temp'0FERASE 1

A

File Hold: {R}<[JFHOLD Y

Access code 2048

This function holds component file(s) and/or external variable(s).

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a non-simple scalar or vector of character
vectors, each of which is the name of an external variable. (NOT the file names
associated with those variables).

380

Dyalog APL/W Language Reference

If applied to component files and external variables, Y is a vector whose elements are
either integer scalars representing tie numbers, or character vectors containing names
of external variables.

The effect is as follows :

1. The user's preceding holds (if any) are released.
Execution is suspended until the designated files are free of holds by any other
task.

3. When all the designated files are free, execution proceeds. Until the hold is
released, other tasks using JFHOLD on any of the designated files will wait.

IfY is empty, the user's preceding hold (if any) is released, and execution continues.
A hold is released by any of the following :

1. Another JFHOLD
Untying or retying all the designated files. If some but not all are untied or
retied, they become free for another task but the hold persists for those that
remain tied.

3. Termination of APL.

4. Any untrapped error or interrupt.

5. A return to immediate execution.

Note that a hold is not released by a request for input through [J or [1.

Note also that point 5 above implies that JF HOLD is generally useful only when called
from a defined function, as holds set in immediate execution (desk calculator) mode are
released immediately.

The shy result of JFHOLD is a vector of tie numbers of the files held.

Examples :
OFHOLD 1

OFHOLD €

OFHOLD <'XTVAR'

OFHOLD 1 2,[0.5]0 16385
OFHOLD 1 'XTVAR'

Chapter 6 System Functions & Variables 381

Fix Script:

{R}«{X}OFIX Y

OF IX fixes a Class from the script specified by Y.

Y must be a vector of character vectors or character scalars that contains a well-formed
Class script. If so, the shy result R is a reference to the new Class fixed by F IX.

The Class specified by Y may be named or unnamed.

If specified, X must be a numeric scalar. If X is omitted or non-zero, and the Class
script Y specifies a name (for the Class), [JF IX establishes that Class in the workspace.

If X is O or the Class specified by Y is unnamed, the Class is not established per se,
although it will exist for as long as a reference to it exists.

In the first example, the Class specified by Y is named (MyC1ass) but the result of
0F IX is discarded. The end-result is that MyC1lass is established in the workspace as
a Class.

O«0FIX ':Class MyClass' ':EndClass'
#.MyClass

In the second example, the Class specified by Y is named (MyC1lass) and the result of
OF IX is assigned to a different name (MYREF). The end-result is that a Class named
MyClass is established in the workspace, and MYREF is a reference to it.

MYREF<[JFIX ':Class MyClass' ':EndClass'
JCLASSES
MyClass MYREF
[ONC'MyClass' 'MYREF'
9.4 9.4
MYREF
#.MyClass

In the third example, the left-argument of O causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF<«0 [OFIX ':Class MyClass' ':EndClass'
JCLASSES

MYREF
MYREF

#.MyClass

382 Dyalog APL/W Language Reference

The final example illustrates the use of un-named Classes.

MYREF

Pete

src<':Class' 'vVMake n'

src,«'Access Public' 'Implements Constructor'
src,«'[IDF n' 'v' ':EndClass'

MYREF<OFIX src

JCLASSES

MYINST<[IJNEW MYREF 'Pete'’
MYINST

Component File Library: R«[JFLIB Y

Y must be a simple character scalar or vector which specifies the name of the directory
whose APL component files are to be listed. If Y is empty, the current working
directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by Y followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in question,
the result is an empty character matrix with 0 rows and 0 columns.

Note that if a file is exclusively tied (as opposed to share tied) then it is not reported by

OFLIB.

Examples

gfFLIs '

SALESFILE

COSTS

gfFLis '.'

./SALESFILE
./COSTS

OFLIB '../budget'

../budget/SALES.85
../budget/COSTS.85

Chapter 6 System Functions & Variables 383

Format (Monadic): R<[JFMT Y

Y may be any array. R is a simple character matrix which appears the same as the
default display of Y. If Y contains control characters from (JTC, they will be resolved.

Examples
A<QOFMT 'n' ,0OTC[1],'c"

pA
11
A
A
A<[JVR 'FOO'
A
V R«FOO
[1] R<10
v
pA
31
B<[FMT A
B
vV R«<FOO
[1] R<10
\
pB

3 12

384 Dyalog APL/W Language Reference

Format (Dyadic): ReX OFMT Y

Y must be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in Y must
be homogeneous, either character or numeric. X must be a simple character vector. R
is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalar in Y is treated as a one-element matrix. A simple vector in Y
is treated as a one-column matrix. Each column of the simple arrays in Y is formatted
in left-to-right order according to the format specification in X taken in left-to-right
order and used cyclically if necessary.

R has the same number of columns as the longest column (or implied column) in Y, and
the number of rows is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format
rEw.s Scaled format
rqfw.d Decimal format
rqGlpattern(] Pattern

rqlw Integer format

Tn Absolute tabulation
Xn Relative tabulation
0t0 Text insertion.

(Alternative surrounding pairs for Pattern or Text insertion are

<>, >, 00or ™)
where:

r is an optional repetition factor indicating that the
format phrase is to be applied to r columns of Y.

q is an optional usage of qualifiers or affixtures from
those described below.

W is an integer value specifying the total field width
per column of Y, including any affixtures.

Chapter 6 System Functions & Variables 385

pattern

Qualifiers q are as follows:

B

Km

ov[t[]
S[p(

is an integer value specifying the number of significant
digits in Scaled format; s must be less than w-1.

is an integer value specifying the number of places of
decimal in Decimal format; d must be less than w.

is an integer value specifying a tab position relative to
the notional left margin (for T-format) or relative to the
last formatted position (for X-format) at which to begin
the next format.

is any arbitrary text excluding the surrounding
character pair. Double quotes imply a single quote in
the result.

see following section G format

leaves the field blank if the result would otherwise be
Z€ro.

inserts commas between triads of digits starting from
the rightmost digit of the integer part of the result.

scales numeric values by 1Em where m is an integer;
negation may be indicated by ~ or - preceding the
number.

left justifies the result in the field width.
replaces specific numeric value v with the text t.

substitutes standard characters. p is a string of pairs of
symbols enclosed between any of the Text Insertion
delimiters. The first of each pair is the standard symbol
and the second is the symbol to be substituted.
Standard symbols are:

* overflow fill character
decimal point

triad separator for C qualifier
0 fill character for Z qualifier
loss of precision character

-

386 Dyalog APL/W Language Reference

Z
9

Affixtures are as follows:

MOt

NOt0
POtO
QMtO
ROtO

fills unused leading positions in the result with
zeros (and commas if C is also specified).
digit selector

prefixes negative results with the text t instead of
the negative sign.

post-fixes negative results with the text t.

prefixes positive or zero results with the text t.
post-fixes positive or zero results with the text t.
presets the field with the text t which is repeated as
necessary to fill the field. The text will be replaced
in parts of the field filled by the result, including the

effects of other qualifiers and affixtures except the
B qualifier.

The surrounding affixture delimiters may be replaced by the alternative pairs described

for Text Insertion.

Examples

A vector is treated as a column:

‘I5' OFMT 10 20 30

10
20
30

The format specification is used cyclically to format the columns of the right argument:

'I3,F5.2"' OFMT 2 4p18

1 2.00 3 4.00
5 6.00 7 8.00

Chapter 6 System Functions & Variables 387

The columns of the separate arrays in the items of a non-simple right argument are
formatted in order. Rows in a formatted column beyond the length of the column are
left blank:

'2I4,F
0
0

" OFMT (14)(2 2p 0.1x14)

[eNeJ N

.1
.2
b

FWkE -

Characters are right justified within the specified field width, unless the L qualifier is
specified:

"A2' [OFMT 1 6p'SPACED'
SPACED

If the result is too wide to fit within the specified width, the field is filled with
asterisks:

'F5.2"' OFMT 0.1x5 1000 ~100
0.50

* % %k % %
* % %k % %

Relative tabulation (X-format) identifies the starting position for the next format phrase
relative to the finishing position for the previous format, or the notional left margin if
none. Negative values are permitted providing that the starting position is not brought
back beyond the left margin. Blanks are inserted in the result, if necessary:

'I2,X3,3A1" OFMT (13)(2 3p'TOPCAT')

1 TOP
2 CAT
3

Absolute tabulation (T-format) specifies the starting position for the next format
relative to the notional left margin. If position 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as required.
Over-written columns in the result contain the most recently formatted array columns
taken in left-to-right order:

X<'6I1,T5,A1,T1,3A1,T7,F5.1"'

X OFMT (1 6p16)('x')(1 3p'ABC')(22.2)
ABCY4x6 22.2

388 Dyalog APL/W Language Reference

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol :

'F20.1' [OFMT 1E18+3
3333333333333333__._

The Text Insertion format phrase inserts the given text repeatedly in all rows of the

result:
MEN<«3 5p'FRED BILL JAMES'
WOMEN<«2 5p'MARY JUNE '
'SA1,<|>' OFMT MEN WOMEN

FRED |MARY |

BILL |JUNE |

JAMES | |

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates effects of the various qualifiers:

X«<'F5.1,BF6.1,X1,ZF5.1,X1,LF5.1,K3CS<.,,.>F10.1"'

X OFMT §5 3p™1.5 0 25
1.5 ~1.5 ~01.5 “1.5 ~1.500,0
0.0 000.0 0.0 0,0
25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended by
the inclusion of affixtures. N and Q affixtures shift the result to the left by the number
of characters in the text specification. Affixtures may be used to enclose negative
results in parentheses in accordance with common accounting practice:

'M<(>N<)>Q< >F9.2"' OFMT 150.3 ~50.25 0 1114.9
150.30
(50.25)
0.00
1114%.90

One or more format phrases may be surrounded by parentheses and preceded by an
optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertio388
phrase will not be re-used if the last data format phrase is preceded by a closing
parenthesis:

'12,2(</>,2I2)"' OFMT 1 3p$100|3t0TS
20/07/89

Chapter 6 System Functions & Variables 389

G Format
Only the B, K, S and O qualifiers are valid with the G option

[Opattern[lis an arbitrary string of characters, excluding the delimiter characters.
Characters '9' and 'Z' (unless altered with the S qualifier) are special and are known as
digit selectors.

The result of a G format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. If there are fewer data digits than
digit selectors, the data digits are padded with leading zeros. If there are more data
digits than digit selectors, the result will be filled with asterisks.

A'9' digit selector causes a data digit to be copied to the result.

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on either side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on either
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples

'Gc99/99/99>"'0FMT 0 100 100 18 7 89
08/07/89

'Ge22/27/717>'00FMT 80789 + 0 1
8/07/89
8/07/9

'GeAndy ZZ Pauline ZZ>' [OFMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

p«'K2GeDM 7.227.179,99>"' [OFMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234%,56
2 15

An error will be reported if:
1. Numeric data is matched against an A control phrase.
Character data is matched against other than an A control phrase.
The format specification is ill-formed.
For an F control phrase, d>w-2
For an E control phrase, s>w-2

Dbk

390

Dyalog APL/W Language Reference

O Format Qualifier

The O format qualifier replaces a specific numeric value with a text string and may be
used in conjunction with the E, F, I and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value which
is to be substituted (if omitted, the default is 0) and then the text string within pairs of
symbols such as "<>". For example:

O - qualifier Description
O<nil> Replaces the value 0 with the text "nil"
O42<N/A> Replaces the value 42 with the text "N/A"

00.001<1/1000> Replaces the value 0.001 with the text "1/1000"

The replacement text is inserted into the field in place of the numeric value. The text is
normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifier is [ICT sensitive.

Examples
"O<NIL>F7.2'00FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>LF7.2'0FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>O42<N/A>I6'[JFMT 12 0 42 13
12
NIL
N/A
13
'099<replace>F20.2'0Ofmt 99 100 101
replace
100.00

101.00

Chapter 6 System Functions & Variables 391

File Names: R<«[JFNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. If no files
are tied, the result is a character matrix with O rows and 0 columns. The rows of the
result are in the order in which the files were tied.

Examples
'/usr/pete/SALESFILE' [OFSTIE 16

'../budget/COSTFILE' [FSTIE 2
'"PROFIT' [FCREATE 5

OFNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

pFNAMES
3 19

OFNUMS ,O0FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

392

Dyalog APL/W Language Reference

File Numbers: R<[JFNUMS

The result is an integer vector of the tie numbers of all tied files. If no files are tied,
the result is empty. The elements of the result are in the order in which the files were
tied.

Examples

"/usr/pete/SALESFILE' [OFSTIE 16
'../budget/COSTFILE' [FSTIE 2
"PROFIT' [FCREATE 5

OFNUMS
16 2 5

OFNUMS ,0FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

OFUNTIE [OFNUMS
pOFNUMS

File Properties: R«X OFPROPS Y

Access Code 1 or 8192

OF PROPS reports and sets the properties of a component file.

Y must be a simple integer scalar or vector containing the file tie number.

X must be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a vector of 2-element vectors, each of which contains an
Identifier and a (new) value for that property.

If the left argument is a simple character array, the result R contains the current values

for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X

Chapter 6 System Functions & Variables 393

Identifier | Property Description / Legal Values
S File Size 32 = Small Component Files (<4Gb)
(read only) 64 = Large Component Files
E Endian-ness 0 = Little-endian
(read only) 1 = Big-endian
u Unicode 0 = Characters must be written as type 82 arrays
1 = Characters must be written as Unicode arrays
J Journaling 0 = Disable Journaling
1 = Enable Journaling

The default properties for a newly created file are as follows:

e S=64
e U=1 (Unicode Edition and 64-bit file) or 0 (otherwise)
o J=0.
e E depends upon the computer architecture.
Example

tn<'myfileébt' [OFCREATE O
"SEUJ' [OFPROPS tn
64 0 1 0

tne<'myfile32' [OFCREATE 0 32
"SEUJ' [OFPROPS tn
32000

The following expression disables Unicode and switches Journaling on. The function
returns the previous settings:

(‘U 0)('J" 1) OFPROPS tn
10

The Unicode property applies only to 64-bit component files. 32-bit component files
may not contain Unicode character data and the value of the Unicode property is
always 0. To convert a 32-bit component file to a 64-bit component file, use [JF COPY.

Properties may be read by a task with [JFREAD permission (access code 1), and set by a
task with [JF STAC access (8192). To set the value of the Journaling property, the file
must be exclusively tied.

If Journaling or Unicode properties are set, the file cannot be tied by Versions prior to
Version 12.0.

394 Dyalog APL/W Language Reference

File Read Access: R<[JFRDAC Y

Access code 4096

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. The result is the access matrix for the designated file.

See "File Access Control" in User Guide for further details.

Examples

OFRDAC 1
28 2105 16385
0 2073 16385
31 ~1 0

File Read Component Information: R«FRDCI Y

Access code 512

Y must be a simple integer vector of length 2 or 3 containing the file tie number,
component number and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:

a) the size of the component in bytes (i.e. how much disk space it occupies).
b) the user number of the user who last updated the component.
c) the time of the last update in 60ths of a second since 1st January 1970.

Example

OFRDCI 1 13
2200 207 3.702094494E10

Chapter 6 System Functions & Variables 395

File Read Component: R<(JFREAD Y

Access code 1

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is the value of the array stored on the tied file at the given component
number.

Examples

PSALES<[JFREAD 1 241
3 212

GetFile«{dio<«0
tie«w [(fstie O
fm to«2t[fsize tie
cnos«fm+ito-fm
cvec<{[fread tie w} 'cnos
cvec{a}dfuntie tie

Extract contents.

new tie number.

first and next component.

vector of component nos.

vector of components.
untie and return.

DO®DO®DDOD®DD

396 Dyalog APL/W Language Reference

File Rename: {R}«X OFRENAME Y

Access code 128

Y must be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. If the passnumber is omitted it is assumed to be zero.

X must be a simple character scalar or vector containing the new name of the file. This
name must be in accordance with the operating system's conventions, and may be
specified with a relative or absolute pathname.

The file being renamed must be tied exclusively.

The shy result of JF RENAME is the tie number of the file.

Examples

"SALES' OFTIE 1
"PROFIT' OFTIE 2

OFNAMES
SALES
PROFIT

"SALES.85' [FRENAME 1
‘../profits/PROFIT.85"' [JFRENAME 2

OFNAMES
SALES.85
../profits/PROFITS.85

Rename<«{
fm to<«w
OFUNTIE to [OFRENAME fm [FTIE O

Chapter 6 System Functions & Variables 397

File Replace Component: {R}«X OFREPLACE Y

Access code 16

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's
component number limits.

X is any array (including, for example, the [JOR of a namespace), and overwrites the
value of the specified component. The component information (see JFRDCI) is also
updated.

The shy result of JFREPLACE is the file index (component number of replaced
record).

Example
SALES<[JFREAD 1 241
(SALESx1.1) OFREPLACE 1 241
Define a function to replace (index, value) pairs in a component file JMS.DCF:
Frep«<{
tie«a OFTIE O

_<{w OFREPLACE tie a}/"w
OFUNTIE tie

'jms'Frep(3 'abc')(29 'xxx')(7 'yyy')

398 Dyalog APL/W Language Reference

File Resize: {R}«{X}OFRESIZE Y

Access code 1024

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
Zero.

X is included for compatibility with other APL systems.

A side effect of JFRESIZE is to cause the file to be compacted. Any interrupt entered
at the keyboard during the compaction is ignored.

The shy result of JFRESIZE is the tie number of the file.

Example

OFSIZE 1
1 21 65271 4294967295

200000 [JFRESIZE 1 ¢ [FSIZE 1
1 21 41456 4294967295

0 OFRESIZE 1 A Force file compaction.

File Size:

ROFSIZE Y

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. The result is a 4 element numeric vector containing the following:

Element | Description

1 the number of first component

2 1 + the number of the last component, (i.e. the result of the next
OFAPPEND)

3 the current size of the file in bytes

4 the file size limit in bytes

Example
OFSIZE 1

1 21 65271 4294967295

Chapter 6 System Functions & Variables 399

File Set Access: {R}«X OFSTAC Y

Access code 8192

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
ZET0.

X must be a valid access matrix, i.e. a 3 column integer matrix with any number of
TOWS.

See "File Access Control" in User Guide for further details.

The shy result of JF STAC is the tie number of the file.

Examples

SALES [FCREATE 1
(3 3p28 2105 16385 0 2073 16385 31 ~1 0) QOFSTAC 1
((OFRDAC 1)521 2105 16385) [FSTAC 1

(1 3p0 ~1 0)OFSTAC 2

400

Dyalog APL/W Language Reference

File Share Tie: {R}«X OFSTIE Y

Y must be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

X must be a simple character scalar or vector which specifies the name of the file to be
tied. The file must be named in accordance with the operating system's conventions,
and may be specified with a relative or absolute pathname.

The file must exist and be accessible by the user. Ifit is already tied by another task, it
must not be tied exclusively.

The shy result of JF STIE is the tie number of the file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates
the first (closest to zero) available tie number and returns it as an explicit result. This
allows you to simplify code. For example:

from:

tie«1+[/0,0FNUMS @a With next available number,

file OFSTIE tie A ... share tie file.
to:

tie«file OFSTIE O A Tie with first available number.
Example

‘SALES' OFSTIE 1
‘../budget/COSTS' [OFSTIE 2

Chapter 6 System Functions & Variables 401

Exclusive File Tie: {R}«X OFTIE Y

Access code 2

Y must be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

X must be a simple character scalar or vector which specifies the name of the file to be
exclusively tied. The file must be named in accordance with the operating system's
conventions, and may be a relative or absolute pathname.

The file must exist and be accessible by the user. It may not already be tied by another
user.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates
the first (closest to zero) available tie number, and returns it as an explicit result,. This
allows you to simplify code. For example:

from:

tie<«1+[/0,0JFNUMS A With next available number,
file OFTIE tie A ... tie file.

to:

tie«file OFTIE O A Tie with first available number.

The shy result of JF TIE is the tie number of the file.

402 Dyalog APL/W Language Reference

Examples
"SALES' OFTIE 1

‘../budget/COSTS' OFTIE 2
'../budget/expenses' [FTIE 0O

File Untie: {R}<«[JFUNTIE Y

Y must be a simple integer scalar or vector (including Zilde). Files whose tie numbers
occur in Y are untied. Other elements of Y have no effect.

IfY is empty, no files are untied, but all internal file buffers are written to disk. Under
UNIX this is achieved with fsync; under Windows with the Commit File function
(Int 21h Function 68h); on Win32 systems it is achieved with

FlushFileBuffers (). This special facility allows the programmer to add extra
security (at the expense of performance) for application data files.

The shy result of JFUNTIE is a vector of tie numbers of the files actually untied.

Example
OFUNTIE [OFNUMS A Unties all tied files

OFUNTIE & A Flushes all buffers to disk

Chapter 6 System Functions & Variables

403

Fix Definition:

{R}<OFX Y

Y is the representation form of a function or operator which may be:

1.

R is either a simple character vector or an integer scalar. A result is not returned if a

its canonical representation form similar to that produced by [JCR except that
redundant blanks are permitted other than within names and constants.

its nested representation form similar to that produced by [ONR except that
redundant blanks are permitted other than within names and constants.

its object representation form produced by [JOR.

its vector representation form similar to that produced by OVR except that
additional blanks are permitted other than within names and constants.

result is not explicitly used or assigned.

A side effect of F X is to create (fix) a function or operator in the workspace or current
namespace from the definition given by Y. IO is an implicit argument of (JF X.

If the function or operator is successfully fixed, R is its name. Otherwise R is the row
of the canonical representation form in which the first error preventing its definition is
detected. An integer R is dependent on [JIO.

Functions and operators which are pendent, that is, in the State Indicator without a

suspension mark (*), retain their original definition until they complete, or are cleared
from the State Indicator. All other occurrences of the function or operator assume the

new definition. The function or operator will fail to fix if it has the same name as an

existing variable, or a visible label.

404 Dyalog APL/W Language Reference

Instances: R<[JINSTANCES Y

OINSTANCES returns a list all the current instances of the Class specified by Y.

Y must be a reference to a Class.
R is a vector of references to all existing Instances of Class Y.

Examples

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
;éﬁd01ass A Animal
:Class Bird: Animal
;éﬁdClass A Bird
:Class Parrot: Bird

;éﬁdC]ass A Parrot

Eeyore<[OJNEW Animal
Robin<[ONEW Bird
Polly<[INEW Parrot

JINSTANCES Parrot
#.[Parrot]

OOINSTANCES Bird
#.[Bird] #.[Parrot]

[JINSTANCES Animal
#.[Animal] #.[Bird] #.[Parrot]

Eeyore.[JDF 'eeyore'
Robin.(DF 'robin'
Polly.ODF 'polly’

Chapter 6 System Functions & Variables

405

OOINSTANCES Parrot

polly

OINSTANCES Bird

robin

OINSTANCES Animal
eeyore

polly

robin polly

Index Origin:

OdIo

(IO determines the index of the first element of a non-empty vector.

IO may be assigned the value 0 or 1. The value in a clear workspace is 1.

(IO is an implicit argument of any function derived from the Axis operator ([K]), of
the monadic functions Fix (OF X), Grade Down (V), Grade Up (4), Index Generator (1),
Roll (?), and of the dyadic functions Deal (?), Find (P), Grade Down (¥), Grade Up
(4), Index Of (1), Indexed Assignment, Indexing, Pick () and Transpose (®).

Examples

1234

0123

n >
n @
no

0I0+«1

+/[0]12 3p16

"ABC',[7.5]'="

406

Dyalog APL/W Language Reference

Key Label: R<[JKL Y

Classic Edition only.

Y is a simple character vector or a vector of character vectors containing Input Codes
for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with
Keyboard Shortcuts by the Input Translate Table.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. If Y specifies codes that are not defined, the corresponding
elements of R are the codes in Y.

OKL provides the information required to build device-independent help messages into
applications, particularly full-screen applications using [JSM and [JSR.
Examples :
OkL ‘RC'
Right

OkL 'ER' 'EP' 'QT' 'F1' 'F13'
Enter Esc Shift+Esc F1 Shift+F1

Line Count: R«[LC

This is a simple vector of line numbers drawn from the state indicator (See Chapter 2).
The most recently activated line is shown first. If a value corresponds to a defined
function in the state indicator, it represents the current line number where the function
is either suspended or pendent.

The value of [JL C changes immediately upon completion of the most recently activated
line, or upon completion of execution within ¢ or [J. If a[JSTOP control is set, (LC
identifies the line on which the stop control is effected. In the case where a stop
control is set on line 0 of a defined function, the first entry in [JL C is 0 when the control
is effected.

The value of [LC in a clear workspace is the null vector.

Examples

)SI
TASK1[5]*

®
BEGIN[3]

gdLc
5 3

Chapter 6 System Functions & Variables 407

~[LC
gdLc

plLC

Load Workspace: OLOAD Y

Y must be a simple character scalar or vector containing the identification of a saved
workspace.

IfY is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace, a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. If the loaded workspace was saved by the) SAVE system
command, the latent expression (L X) is immediately executed, unless APL was
invoked with the -x option. If the loaded workspace was saved by the JSAVE system
function, execution resumes from the point of exit from the JSAVE function, with the
result of the [JSAVE function being 0.

The workspace identification and time-stamp when saved is not displayed.

If the workspace contains any GUI objects whose Vi sib1e property is 1, these
objects will be displayed. If the workspace contains a non-empty [JSM but does not
contain an SM GUI object, the form defined by [JSM will be displayed in a window on
the screen.

408 Dyalog APL/W Language Reference

Lock Definition: {X}0OLOCK Y

Y must be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace.

The active referent to the name in the workspace is locked. Stop or trace vectors,
formerly set by the JSTOP and JTRACE functions, are cancelled.

The optional left argument X specifies to what extent the function code is hidden. X
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form
using [JCR, VR or [ONR.

2. Execution cannot be suspended with the locked function or operator in the
state indicator. On suspension of execution the state indicator is cut back to
the statement containing the call to the locked function or operator.

3. Both 1 and 2 apply. You can neither display the locked object nor suspend
execution within it.

Locks are additive, so that the following are equivalent:

1 (LOCK'FOO'
2 [JLOCK'FOO'

3 [OLOCK'FOO'

A DOMAIN ERROR is reported if:
1. Y isill-formed.
2. The name in Y is not the name of a visible defined function or operator which
is not locked.

Examples

OVR'FOO'
vV R«FOO
[1] R«<10
v

(JLOCK'FOO'
OVR'FOO'

OLOCK'FOO"

DOMAIN ERROR
0OLOCK'FOO"
A

Chapter 6 System Functions & Variables 409

Latent Expression: 0L X

This may be a character vector or scalar representing an APL expression. The
expression is executed automatically when the workspace is loaded. If APL is invoked
using the —x flag, this execution is suppressed.

The value of L X in a clear workspace is ' '

Example
OLX«"'''GOOD MORNING PETE'"''

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

)LOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File:

R<{X}OMAP Y

OMAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; APL and raw. An APL mapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the supplied utility function AMPUT. When you map an
APL file, the rank, shape and data type of the array is obtained from the information on
the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to [JMAP.

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Y may be a simple character vector, or a 2 or 3-
element nested vector containing:

1. file name (character scalar/vector)

2. access code (character scalar/vector) : one of : 'R', 'W', 't' or 'W'

3. start byte offset (integer scalar/vector). Must be a multiple of 4 (default 0)

If X is specified, it defines the type and shape to be associated with raw data on file. X
must be an integer scalar or vector. The first item of X specifies the data type and must
be one of the following values:

410 Dyalog APL/W Language Reference

Classic Edition 11,82, 83, 163, 323 or 645
Unicode Edition | 11, 80, 83, 160, 163, 320, 323 or 645

Following items determine the shape of the mapped array. A value of ~1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this way.

If no left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc).

Mapped files may be updated by changing the associated array using indexed
assignment: var[a]<«b.

Note that a raw mapped file may be updated only if its file offset is 0.

Examples

Map raw file as a read-only vector of doubles:
vec«<6b645 ~1 [OMAP'c:\myfile'

Map raw file as a 20-column read-write matrix of 1-byte integers:
mat«83 ~1 20 [OMAP'c:\myfile' 'W'

Replace some items in mapped file:
mat[2 3:;4 5]«2 2pi4

Map bytes 100-180 in raw file as a 5x2 read-only matrix of doubles:
dat«<645 5 2 [OMAP'c:\myfile' 'R' 100

Put simple 4-byte integer array on disk ready for mapping:
(83 323 ODR 2 3 4p124)AMPUT'c:\myvar'

Then, map a read-write variable:
var<[JMAP'c:\myvar' 'w'

Note that a mapped array need not be named. In the following example, a ‘raw’ file is
mapped, summed and released, all in a single expression:

+/163 1 OMAP'c:\shorts.dat'
42

Chapter 6 System Functions & Variables 411

Compatibility between Editions

In the Unicode Edition (OJMAP will fail witha TRANSLATION ERROR (event number
92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was written
using data type 82, the file may be mapped with data type 83 and the characters
extracted by indexing into [JAVU.

Migration Level:

OML

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of O changes the
interpretation of certain symbols and language constructs.

OML<«0 Native Dyalog (Default)
OML<«1 Z«€R Monadic ' €' is interpreted as 'enlist' rather than
'type’.
OML<«2 Z+1R Monadic ' t' is interpreted as 'first' rather than 'mix'.
Z+>R Monadic '>" is interpreted as 'mix' rather than 'first'.
Z+=R Monadic '=" returns the absolute value of the depth
of its argument, rather than a negative value if the
depths of its subarrays are unequal
OML<3 R«Xc[K]Y Dyadic '<' follows the APL2 (rather than the
original Dyalog APL) convention
arc The order of the elements of TC is the same as in
APL2

Subsequent versions of Dyalog APL may provide further migration levels.

Examples
X«2(3 4)
OML<«0
exX

0 00
t+X

20

3 4
s> X

2
=X

412 Dyalog APL/W Language Reference

wW N
+ o

OML<«1
exX

+X

X

X
OML<2
eX
X

oX

1]
>

Set Monitor:

{R}«X OMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
monitor is to be placed. Numbers outside the range of line numbers in the function or
operator (other than 0) are ignored. The number O indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of []I0.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned.

The effect of JMONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See Monitor Query for details.

Examples

+(0,110) [MONITOR

012345

Chapter 6 System Functions & Variables 413

Existing monitors are cancelled before new ones are set:

+1 [JMONITOR 'FOO'
1

All monitors may be cancelled by supplying an empty vector:
& [OMONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.

Query Monitor: R«[JMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer matrix of 5 columns
with one row for each line in the function or operator Y which has the monitor set,

giving:

Column 1 : Line number

Column 2 : Number of times the line was executed
Column 3 : CPU time in milliseconds

Column 4 : Elapsed time in milliseconds

Column 5 : Reserved

The value of 0 in column one indicates that the monitor is set on the function or
operator as a whole.

Example
vV FOO
[1] A<?25 25p100
[2] B<EA
[3] cC<@E8

(4] R1«<[0.5+A+.xB
[5] R2<A=C
v

(0,15) [DMONITOR 'FOO' m Set monitor

FOO A Run function
OMONITOR 'FOO' A Monitor query

01 1418 1000 O

11 83 00

2 1 40O 00

31 397 00

4 1 467 1000 O

51 100 00

414

Dyalog APL/W Language Reference

Name Association: {R}«<{X}ONA Y

ONA provides access from APL to compiled functions within a Dynamic Link
Library (DLL). A DLL is a collection of functions typically written in C (or C++)
each of which may take arguments and return a result.

Instructional examples using [JNA can be found in supplied workspace: QUADNA . DWS.

The DLL may be part of the standard operating system software, purchased from a
third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the [JNA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function that
was fixed.

For example, math.d11 might be a library of mathematical functions containing a
function divide. To associate the APL name di v with this external function:

‘div' ONA 'F8 math|divide I4 I4'

where F 8 and I4, specify the types of the result and arguments expected by divide.
The association has the effect of establishing a new function: d1i v in the workspace,
which when called, passes its arguments to divide and returns the result.

)fns
div

div 10 4
2.5

Chapter 6 System Functions & Variables 415

Type Declaration

In a compiled language such as C, the types of arguments and results of functions must
be declared explicitly. Typically, these types will be published with the documentation
that accompanies the DLL. For example, function divide might be declared:

double divide(long int, long int);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration and
the right argument of (JNA:

C: double divide (long int, long int);

APL: 'div' [NA 'F8 math|divide I4 I4 !

It is imperative that care be taken when coding type declarations. A DLL cannot check
types of data passed from APL. A wrong type declaration will lead to erroneous results

or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of [JNA is:

[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.

Pathname: APL uses the LoadLibrary () system function under Windows and
dlopen () under UNIX and LINUX to load the DLL. If a full or relative pathname is
omitted, these functions search standard operating system directories in a particular
order. For further details, see the operating system documentation about these
functions.

Alternatively, a full or relative pathname may be supplied in the usual way:

ONA'... c:\mydir\mydl1]|foo ...'

416

Dyalog APL/W Language Reference

Errors: If the specified DLL (or a dependent DLL) fails to load it will generate:

FILE ERROR 1 No such file or directory

If the DLL loads successfully, but the specified library function is not accessible, it will
generate:

VALUE ERROR

File Extension: If the file extension is omitted, .dll is assumed. Note that some DLLs
are in fact .exe files, and in this case the extension must be specified explicitly:

ONA'... mydll.exe|foo ...'

Function Type: On a Windows computer, two distinct conventions, namely ‘C’ and
‘Pascal’ are in use for passing of arguments and receipt of results. If the type of the
function you are calling differs from the default, for your version of Dyalog APL (see
below) you must specify the function type explicitly immediately following the DLL
name. Combinations are

.C32 32 bit, C calling convention (the default).
.P32 32 bit, Pascal calling convention

Example
ONA'... mydll.exe.P32|foo ...'A 32 bit Pascal
Call by Ordinal Number

A DLL may associate an ordinal number with any of its functions. This number may
then be used to call the function as an alternative to calling it by name. Using [INA to
call by ordinal number uses the same syntax but with the function name replaced with
its ordinal number. For example:

ONA'... myd11]57 ...'
Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be run
in its own system thread. For example:

ONA'... mydl11|foo& ...'

This means that other APL threads can run concurrently with the one that is calling the
ONA function.

Chapter 6 System Functions & Variables a7

Data Type Coding Scheme

The type coding scheme introduced above is of the form:

[direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed below.

Description

Symbol

Meaning

Direction

Pointer to array input to DLL function.

Pointer to array output from DLL function

Pointer to input/output array.

Special

Null-terminated string.

Byte-counted string

Type

int

unsigned int

char

Classic Edition char: translated to/from ANSI
Unicode Edition char

float

APL array

Width

1-byte

2-byte

4-byte

8-byte

Array

Array of length n elements

Array, length determined at call-time

Structure

Structure.

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from [JAV.

In the Unicode Edition, C and T are identical (no translation of character data is
performed) except that for C the default width is 1 and for T the default width is "wide"
(2 bytes under Windows).

The use of T with default width is recommended to ensure portability between

Editions.

418

Dyalog APL/W Language Reference

Direction

C functions accept data arguments either by value or by address. This distinction is
indicated by the presence of a ‘*’ character in the argument declaration:

int numl; // value of numl passed.
int *num2; // Address of num2 passed.

An argument (or result) of an external function of type pointer, must be matched in the
ONA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an input
or an output variable. An output variable means that the C function overwrites values at
the supplied address. Because APL is a call-by-value language, and doesn’t have
pointer types, we accommodate this mechanism by distinguishing output variables, and
having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

< indicates that the address of the argument will be used by C as an input variable and
values at the address will not be over-written.

> indicates that C will use the address as an output variable. In this case, APL must
allocate an output array over which C can write values. After the call, this array will
be included in the nested result of the call to the external function.

= indicates that C will use the address for both input and output. In this case, APL
duplicates the argument array into an output buffer whose address is passed to the
external function. As in the case of an output only array, the newly modified copy
will be included in the nested result of the call to the external function.

Examples

<I2 Pointer to 2-byte integer - input to external function
>C Pointer to character output from external function.

=T Pointer to character input to and output from function.

=A Pointer to APL array modified by function.

Chapter 6 System Functions & Variables 419

Special

In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-
terminated) or # (byte counted) between the direction indicator (<, >, =) and the type
(T or C) specification. For example, a pointer to a null-terminated input character
string is coded as <OT[], and an output one coded as >0T[].

Note that while appending the array specifier ‘[] is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the ‘[]° may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types and widths. For
example, in the Classic Edition, <0U2 may be useful for dealing with Unicode.

420

Dyalog APL/W Language Reference

Type

The data type of the argument is represented by one of the symbols i, u, c, t, f, a,
which may be specified in lower or upper case:

Type Description
I | Integer The value is interpreted as a 2s complement signed integer.
U | Unsigned The value is interpreted as an unsigned integer.

integer

C Character

The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code
point.

In the Classic Edition, the value is interpreted as an index into [JAV.
This means that [JAV positions map onto corresponding ANSI
positions.

For example, with JI0=0:
OAV[35] = 's"', maps to ANSI [35] = '

T Translated
character

The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code
point.

In the Classic Edition, the value is translated using standard Dyalog
OAV to ANSI translation. This means that AV characters map onto
corresponding ANSI characters.

For example, with]I0=0:

OAv[35] = 's', maps to ANSI[115] = ’s’.

F Float

The value is interpreted as an IEEE floating point number.

A | APL array

A pointer to the whole array (including header information) is
passed. This type is used to communicate with DLL functions which
have been written specifically to work with Dyalog APL. See the
User Guide section on Writing Auxiliary Processors. Note that type
A is always passed as a pointer, so is of the form <A, =A or >A.

Chapter 6 System Functions & Variables 421

Width

The type specifier may be followed by the width of the value in bytes. For example:

Iy 4-byte signed integer.

u2 2-byte unsigned integer.

F8 8-byte floating point number.
Fl 4-byte floating point number.

Type Possible values for Width Default value for Width
I 1,2,4,8. 4 for 32-bit DLLs
8 for 64-bit DLLs
u 1,2,4,8. 4 for 32-bit DLLs
8 for 32-bit DLLs
C 1,2,4 1
T 1,2,4 wide character(see below)
F 4,8. 8
A Not applicable.

In the Unicode Edition, the default width is the width of a wide character according to
the convention of the host operating system. This translates to T2 under Windows and
T4 under Unix or Linux.

Examples

I2 16-bit integer
<I4 Pointer to input 4-byte integer
u Default width unsigned integer.
=F4 Pointer to input/output 4-byte floating point number.

422

Dyalog APL/W Language Reference

Arrays

Arrays are specified by following the basic data type with [n] or [], where n
indicates the number of elements in the array. In the C declaration, the number of
elements in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] wvector of 10 ints.
U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C and
ONA. In C, an argument declaration may be given to receive a pointer to either a single
scalar item, or to the first element of an array. This is because in C, the address of an
array is deemed to be the address of its first element.

void foo (char *string);

char ch = 'a', ptr = "abc";
foo (&ch) ; // call with address of scalar.
foo (ptr) ; // call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: '<T"'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]".
Note that it is perfectly acceptable in such circumstances to define more than one name
association to the same DLL function specifying different argument types:

'FooScalar'ONA'mydl11]|foo <T' ¢ FooScalar'a'
'FooVector'[ONA'myd11]|foo <T[]' ¢ FooVector'abc'

Chapter 6 System Functions & Variables 423

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the
symbols { }. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3] means an
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:
typedef struct

{
double f£f;

short i;
} mystruct;

A function defined to receive a count followed by an input pointer to an array of such
structures:

void foo (unsigned count, mystruct *str);

An appropriate [INA declaration would be:
ONA'myd11.foo U <{F8 I2}[]"

A call on the function with two arguments - a count followed by a vector of structures:
foo 4,c(1.% 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an 8-
byte float and a 2-byte int, respectively.

424

Dyalog APL/W Language Reference

Specifying Pointers Explicitly

ONA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun (int valu, int *addr);

You might declare and call it:

ONA'myd11]|fun I <I' o fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first is
if the DLL function requires a null pointer, and the second is where you want to pass
on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as I4. This causes APL to pass the
pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate [JNA definition.

"fun_nul1'0ONA'myd11|fun I I4' ¢ fun_null 42 0O

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Chapter 6 System Functions & Variables 425

Using a Function

A DLL function may or may not return a result, and may take zero or more arguments.
This syntax is reflected in the coding of the right argument of [INA. Notice that the
corresponding associated APL function is niladic or monadic (never dyadic), and that it
always returns a vector result - a null one if there is no output from the function. See
Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:

[ONA 'myd11]|fnt' A Niladic

ONA ‘myd11|fn2 <OT' A Monadic - 1-element arg
0ONA ‘'myd11|fn3 =0T <0T' A Monadic - 2-element arg
DLL function Result-returning:

ONA 'I4 myd11]|fn4' A Niladic

ONA 'I4 myd11]|fn5 F8' A Monadic - 1-element arg

ONA 'I4 myd11|fn6 >I4[] <O0T'm Monadic

2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the [JNA definition. Using the example functions defined
above:

fni A Niladic Function.
fn2 c'Single String' A 1-element arg
fn3 'This' 'That' A 2-element arg

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type of
a numeric argument if necessary, so for example in fn5 defined above, a Boolean value
would be converted to double floating point (F8) prior to being passed to the DLL
function.

426 Dyalog APL/W Language Reference

Pointer Arguments

When passing pointer arguments there are three cases to consider.

< Input pointer: In this case you must supply the data array itself as argument to the
function. A pointer to its first element is then passed to the DLL function.

fn2 c'hello’

> OQOutput pointer: Here, you must supply the number of elements that the output
will need in order for APL to allocate memory to accommodate the resulting array.

fn6 10 'world' A 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually
used, the DLL function would write beyond the end of the reserved array and may
cause the interpreter to crash with a System Error.

= Input/Output: As with the input-only case, a pointer to the first element of the
argument is passed to the DLL function. The DLL function then overwrites some or
all of the elements of the array, and the new value is passed back as part of the
result of the call. As with the output pointer case, if the input array were too short,
so that the DLL wrote beyond the end of the array, the interpreter would almost
certainly crash.

Chapter 6 System Functions & Variables 427

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first
item of the result is the defined explicit result of the external function, and subsequent
items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an
explicit result) + the number of output or input/output arguments.

ONA Declaration Result Output Result

Arguments Length
myd11|fni 0 0
myd11[fn2 <0T 0 0 0
myd11[fn3 =0T <OT 0 10 1
I4 mydl11|fnk 1 1
I4% mydl1|fn5 F8 1 0 1
I4% myd11|fné >I4[] <OT 1 10 2

As a convenience, if the result would otherwise be a 1-item vector, it is
disclosed. Using the third example above:

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has been
disclosed.

428

Dyalog APL/W Language Reference

ANSI /Unicode Versions of Library Calls

Under Windows, most library functions that take character arguments, or return
character results have two forms: one Unicode (Wide) and one ANSI. For example, a
function such as MessageBox (), has two forms MessageBoxA () and
MessageBoxW (). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA () for the Classic Edition, but
MessageBoxW () for the Unicode Edition.

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the
Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to ONA), will
be without the trailing letter (MessageBox).

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and complex
data types using its #define and t ypedef mechanisms. Using such abstractions
enables the C programmer to write code that will be portable across many operating
systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will normally
refer to the type of function arguments using defined names such as HANDLE or
LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list a// the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order to
convert typedefs to primitive C types and thence to [INA declarations. The
documentation may well refer you to the ‘include’ files which are part of the Software
Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their [INA
equivalents might prove useful.

Chapter 6 System Functions & Variables

429

Windows typedef ONA equivalent
HWND I

HANDLE I
GLOBALHANDLE I
LOCALHANDLE I

DWORD Ul

WORD u2

BYTE Ut

LPSTR =0T[] (note 1)
LPCSTR <0T[] (note2)
WPARAM U

LPARAM Ul
LRESULT I4

BOOL I

UINT U

ULONG Ul

ATOM u2

HDC I

HBITMAP I

HBRUSH I

HFONT I

HICON I

HMENU I
HPALETTE I
HMETAFILE I

HMODULE I
HINSTANCE I
COLORREF {U1[4]}
POINT {I 1}
POINTS {12 12}
RECT {ITI1I1I}
CHAR T or C

430

Dyalog APL/W Language Reference

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not indicate
whether this is input or output, so the safest coding would be =0T[] (providing the
vector you supply for input is long enough to accommodate the result). You may be
able to improve simplicity or performance if the documentation indicates that the
pointer is ‘input only” (<OT[]) or ‘output only’ (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore coding
<0T[] is safe.

3. Note that the use of type T with default width ensures portability of code between
Classic and Unicode Editions. In the Classic Edition, T (with no width specifier)
implies 1-byte characters which are translated between [JAV and ASCII, while In
the Unicode Edition, T (with no width specifier) implies 2-byte (Unicode)
characters.

Dyalog32.dli
Included with Dyalog APL is a utility DLL which is called dyalog32.dll.

The DLL contains two functions: MEMCPY and STRNCPY.

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.
Its C definition is:

void MEMCPY (// copy memory
void *to, // target address
void *fm, // source address
unsigned size // number of bytes to copy

) ;

MEMCPY copies size bytes starting from source address fm, to destination address
to. If the source and destination areas overlap, the result is undefined.

MEMCPY’s versatility stems from being able to associate to it using many different type
declarations.

Chapter 6 System Functions & Variables 431

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

‘doubles' [ONA 'dyalog32|MEMCPY >F8[] I4 U4’
doubles numb addr (numbx8)

Notice that:

As the first argument to doub 1es is an output argument, we must supply the number
of elements to reserve for the output data.

MEMCPY is defined to take the number of bytes to copy, so we must multiply the
number of elements by the element size in bytes.

Example

Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {

int empno; // employee number.
float salary; // salary.
char name[20]; // name.

} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

'prec' [ONA 'dyalog32|MEMCPY I4 <{I4 F4 T[20]} U4’
prec addr(99 12345.60 'Charlie Brown
") (4+4+20)

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.
Its C definition is:

void STRNCPY (// copy null-terminated string
char *to, // target address
char *fm, // source address
unsigned size // MAX number of chars to copy

) ;

STRNCPY copies a maximum of size characters from the null-terminated source
string at address fm, to the destination address to. If the source and destination strings
overlap, the result is undefined.

432

Dyalog APL/W Language Reference

If the source string is shorter than size, null characters are appended to the
destination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

Example

Suppose that a database application returns a pointer (addr) to a structure that
contains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names firom the structure:

‘get'0ONA'dyalog32|STRNCPY >0T[] I4 Uy’
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

To copy data from the workspace into an already allocated (new) structure:

'put 'ONA'dyalog32|STRNCPY I4 <OT[] U4'
put new 'Bo' 20
put (new+lW) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough space
to include the trailing null, which would probably cause the application to fail.

Chapter 6 System Functions & Variables 433

Examples
The following examples all use functions from the Microsoft Windows USER32.DLL.

This DLL should be located in a standard Windows directory, so you should not
normally need to give the full path name of the library. However if trying these
examples results in the error message ‘FILE ERROR 1 No such file or directory’, you
must locate the DLL and supply the full path name (and possibly extension).

Example 1

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It
takes no arguments and returns an unsigned in¢ and is declared as follows:

UINT GetCaretBlinkTime (void) ;

The following statements would provide access to this routine through an APL function
of the same name.

ONA 'U User32|GetCaretBlinkTime'
GetCaretBlinkTime
530

ONA 'U User32|GetCaretBlinkTime'

The following statement would achieve the same thing, but using an APL function
called BLINK.

"BLINK' [ONA 'U User32|GetCaretBlinkTime'
BLINK
530

Example 2

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime (UINT) ;

The following statements would provide access to this routine through an APL function
of the same name :

ONA 'User32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

434

Dyalog APL/W Language Reference

Example 3

The Windows function "MessageBox" displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned int.
The second and third arguments are both pointers to null-terminated strings containing
the message to be displayed in the Message Box and the caption to be used in the
window title bar. The 4th argument is an unsigned in¢ that specifies the Message Box
type. The result is an inf which indicates which of the buttons in the message box the
user has pressed. The function is declared as follows:

int MessageBox (HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of the
same name. Note that the 2nd and 3rd arguments are both coded as input pointers to
type T null-terminated character arrays which ensures portability between Editions.

ONA 'I User32|MessageBox*x U <O0T <OT U'

The following statement displays a Message Box with a stop sign icon together with 2
push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBox 0 'Message’ 'Title' 19

The function works equally well in the Unicode Edition because the <0T specification
is portable.

MessageBox 0 'To MAvupa' 'O Tithog' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to use
Dyalog APL’s primitive MsgBox object.

Example 4

The Windows function "FindWindow" obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument should
be a NULL pointer. The second is a pointer to a character string that specifies the title
that identifies the window in question. This is an example of a case described above
where two instances of the function must be defined to cater for the two different types
of argument. However, in practice this function is most often used without specifying
the class name. The function is declared as follows:

HWND FindWindow (LPCSTR, LPCSTR);

Chapter 6 System Functions & Variables 435

The following statement associates the APL function FW with the second variant of the
FindWindow call, where the class name is specified as a NULL pointer. To indicate
that APL is to pass the value of the NULL pointer, rather than its address, we need to
code this argument as I4.

"FW' [ONA 'U User32|FindWindowx I4 <OT'
To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":

O<HNDL«FW O 'CLEAR WS - Dyalog APL/W'
59245156

Example 5

The Windows function "GetWindowText" retrieves the caption displayed in a
window's title bar. It takes 3 arguments. The first is an unsigned in¢ containing the
window handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third argument
is an int which specifies the maximum number of characters to be copied into the
output buffer. The function returns an int containing the actual number of characters
copied into the buffer and is declared as follows:

int GetWindowText (HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL function
of the same name. Note that the second argument is coded as ">0T" indicating that it
is a pointer to a character output array.

ONA 'I User32|GetWindowTextx U >0T I'
Now change the Session caption using)WSID :

JWSID MYWS
was CLEAR WS

Then retrieve the new caption (max length 255) using window handle HNDL from the
previous example:

DISPLAY GetWindowText HNDL 255 255

436

Dyalog APL/W Language Reference

There are three points to note. Firstly, the number 255 is supplied as the second
argument. This instructs APL to allocate a buffer large enough for a 255-element
character vector into which the DLL routine will write. Secondly, the result of the
APL function is a nested vector of 2 elements. The first element is the result of the
DLL function. The second element is the output character array.

Finally, notice that although we reserved space for 255 elements, the result reflects the
length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument as
an input/output array.

e.g.
ONA 'I User32|GetWindowTextx U =0T I'
DISPLAY GetWindowText HNDL (255p' ') 255

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the
workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Example 6

The function "GetCharWidth" returns the width of each character in a given range
Its first argument is a device context (handle). Its second and third arguments specify
font positions (start and end). The third argument is the resulting integer vector that
contains the character widths (this is an example of an output array). The function
returns a Boolean value to indicate success or failure. The function is defined as
follows. Note that this function is provided in the library: GDI32.DLL.

BOOL GetCharWidth (HDC, UINT, UINT, int FAR*);

Chapter 6 System Functions & Variables 437

The following statements provide access to this routine through an APL function of the
same name :

ONA 'U4 GDI32|GetCharWidthx I U U >I[]"
'"P'OWC'Printer'

DISPLAY GetCharWidth ('P' [OWG 'Handle') 65 67 3

| ittt .
| 1 |50 50 50| |
|]]

Note: 'P'OWG'Handle' returns a 32-bit handle which, if the zop bit is set, will
appear in APL as a negative integer. Attempting to supply such a negative number as
an argument to a DLL function when the argument is declared unsigned will result in a
DOMAIN ERROR. Window handles should therefore be declared as I rather than U.

Example 7

The following example from the supplied workspace: QUADNA . DWS illustrates several
techniques which are important in advanced [JNA programming. Function
D11Version returns the major and minor version number for a given DLL.

In advanced DLL programming, it is often necessary to administer memory outside
APL’s workspace. In general, the procedure for such use is:

1. Allocate global memory.

2. Lock the memory.

3. Copy any DLL input information from workspace into memory.
4. Call the DLL function.

5. Copy any DLL output information from memory to workspace.
6. Unlock the memory.

7.

Free the memory.

Notice that steps 1 and 7, and steps 2 and 6 complement each other. That is, if you
allocate global system memory, you must free it after you have finished using it. If you
continue to use global memory without freeing it, your system will gradually run out of
resources. Similarly, if you lock memory (which you must do before using it), then you
should unlock it before freeing it. Although on some versions of Windows, freeing the
memory will include unlocking it, in the interests of good style, maintaining the
symmetry is probably a good thing.

438

Dyalog APL/W Language Reference

V version«D11Version file;Alloc;:;Free;Lock;Unlock;Size
;Info;Value;Copyssizeshndl;addr;buff;ok

"Alloc'ONA'U4% kernel32|GlobalAlloc U4 U4’
'"Free'[DNA'U4 kernel32|GlobalFree U4'
"Lock '0ONA'U4 kernel32|GlobalLock U4’

'"Unlock'0ONA'U4% kernel32|GlobalUnlock Uu'

'Size'[INA'U4 version|GetFileVersionInfoSizex <OT >U4'
'"Info'[INA'U4 version|GetFileVersionInfox<0OT U4 U4 Uyu'
'Value'[INA'U4 version|VerQueryValuex U4 <OT >U4 >Uy'

'Copy '0NA'dyalog32 |MEMCPY >U4[] U4 Uk’

:If xsjze«>Size file O A Size of info
:AndIf xhndl«Alloc 0 size A Alloc memory
:If xaddr<Lock hndl A Lock memory
:If xInfo file 0 size addr A Version info

ok buff size«Value addr'\' 0 0 A Version value
buf f«Copy(size+h4)buff size A Copy info
version«(2/2x16)71>2¢buff A Split version

:EndIf
:EndIf
ok«Unlock hndl A Unlock memory
tEndIf
ok<Free hndl A Free memory
:EndIf

| s ¥ e ¥ s W s s s s N s s N s W s W s N s s s s N e N e N s s s s s | e | e ¥ e |
NNNNNNDNNR R R PRPRPRRPRPRRPRPERPPRPOONOC0ITFWON -
COFWNPFPOOVWONOUOFWNPFP,OLILILILIL LIt

]
]
]
]
]
]
]
]
] :If ok
]
]
]
]
]
]
]
]

v
Lines [2-11] associate APL function names with the DLL functions that will be used.
Lines [2-5] associate functions to administer global memory.
Lines [7-9] associate functions to extract version information from a DLL.
Line[11] associates Copy with MEMCPY function from dyalog32.dll.
Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise, the
calling environment will sustain a VALUE ERROR.

Chapter 6 System Functions & Variables

439

More Examples

ONA ' U4
ONA'I
ONA'U
ONA'I
ONA ‘U4
ONA'I
ONA'IY4
ONA'I
ONA'U
ONA'U
ONA'
ONA'I
ONA'I
ONA'
ONA'
ONA'I
ONA'
ONA ‘U4
ONA ' U4
ONA'I
ONA ‘U4
ONA ' U4
ONA'I
ONA'I
ONA ' U4
ONA'I
ONA'U
ONA'U
ONA'I
ONA' I
ONA'IY4
ONA'I
ONA'I
ONA'U2
ONA'I2
ONA'U
ONA'U
ONA'U
ONA'
ONA'U
ONA ‘U4
ONA ‘U4
ONA ‘U4
ONA ‘U4
ONA ‘U4
ONA'I
ONA'
ONA'I2
ONA ' U4
ONA'I4
ONA'I
ONA ‘U4
ONA'I
ONA'
ONA'I
ONA ' U4
ONA ‘U4
ONA'I2
ONA'I
ONA'U

ADVAPI32
ADVAPI32
ADVAPI32
ADVAPI32
ADVAPI32
ADVAPI32
ADVAPI32
DOS_U32
DOS_U32
DOS_U32
DOS_U32
DOS_U32
DOS_U32
dyalog32
dyalog32
gdi32
GDI32
gdi32
GDI32
gdi32
gdi32
GLU32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
KERNEL32
KERNEL32
kernel32
kernel32
Kernel32
KERNEL32
OpenGL32
OpenGL32
OpenGL32
OpenGL32
USER32
user32
user32
USER32
user32
User32
user32
user32
user32
USER32
user32
user32
USER32
user32
user32
WINMM

|RegCloseKey
|RegCreateKeyExx
|RegEnumValuex

| RegOpenKey *
|RegOpenKeyExx
|RegQueryValueExx
|RegSetValueExx

| Copy

|Dir

|DirMore
|[DirClose’
|Rename

|Erase

| STRNCPY

| MEMCPY

| AddFontResourcex
[BitB1t

|GetPixel
|GetStockObject
|RemoveFontResource
|SetPixel
|gluPerspective
_lclose

“lcreat

11seek

CopyF11eA
GetEnvironmentStri
|GetLastError'
|GetPrivateProfilel
|GetProfileStringx
|GetSystemDirectory
|GetTempPathA
|GetWindowsDirector
|GlobalAlloc
|GlobalFree
|GlobalMemoryStatus
WritePrivateProfil
glClearColor
glClearDepth
glEnable
glMatrixMode
ClientToScreen
FindWindowx

| ShowWindow
|GetAsyncKeyState
|GetDC

UL

U<OT I <OTITITI>U>Uu'
Uu >0T =U U >U >0T =U'
U <0T >U'

U4 <O0T U4 U4 =Uy'’

U <0T U4 >U4 >0T =I4'
U <0T U4 U4 <OT Uy'
<0T <O0T'

<0T U >0T'

U >oT'

<0T <O0T'

<0T'

>0T I4 uy'
>{U1[4]1}[16] I4 Uy4'
<0T'
Uuuvuuvuuvuuvuuuuu
U4 U4 Uy’

uy'

*x <0T'

U4 U4 U4 uy'

F8 F8 F8 F8'

UI

<0T I'

I uy I

<0T I'

ngs'

ntx <0T <O0T I <OT'
<0T <OT <OT >0T I'
x >0T U2'
uy >0T'
yx >0T U'
U uy'
UI
={U4 U4 U4% U4 U4 U4 U4 Uy}’
eString* <0T <OT <O0T <OT'
F4 F4 Fl4 Fy'
Fi'
uy'
uy'
U =u4f2]"
I4 <OT'
I1'
II
uy'

|GetDialogBaseUnits'

|GetFocus'
|GetSysColor
|GetSystemMetrics
|InvalidateRgn
|MessageBoxx
|ReleaseDC

| SendMessagex
|SetFocus
[WinHelpx

| sndPlaySoundx

I '

I 1

It U4 U4’

I <0T <OT I'
U4 uy'

It U4 U4 <I[]'
I '

I <0T I Iy’
<0T U'

440

Dyalog APL/W Language Reference

Native File Append: {R}«X ONAPPEND Y

This function appends the ravel of its left argument X to the end of the designated
native file. X must be a simple homogeneous APL array. Y is a 1- or 2-element integer
vector. Y[1] is a negative integer that specifies the tie number of a native file. The
optional second element Y[2] specifies the data type to which the array X is to be
converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the record,
which is also the start of the following one.

Unicode Edition

Unless you specify the data type in Y[2], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) ONAPPEND will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or 320)
in order to write Unicode characters whose code-point are in the range 256-65535 and
>65535 respectively.

Example
n<'test '[INCREATE O

abc' [nappend n

‘tapépva'llnappend n
DOMAIN ERROR
"tagépva'[ONAPPEND n

A

"taBépva'[INAPPEND n 160

ONREAD n 80 3 O
abc

ONREAD n 160 7
Tapépva

For compatibility with old files, you may specify that the data be converted to type 82
on output. The conversion (to [JAV indices) will be determined by the local value of
OAVU.

Chapter 6 System Functions & Variables M

Name Classification: R«[NC Y

Y must be a simple character scalar, vector, matrix ,or vector of vectors that specifies a
list of names. R is a simple numeric vector containing one element per name in Y.

Each element of R is the name class of the active referent to the object named in Y.

If Y is simple, a name class may be:

Name Class | Description

1 invalid name

0 unused name

1 Label

2 Variable

3 Function

L4 Operator

9 Object (GUI, namespace, COM, .Net)

If Y is nested, a more precise analysis of name class is obtained whereby different
types of functions (primitive, traditional defined functions, D-fnns) are identified by a
decimal extension. For example, defined functions have name class 3.1, D-fns have
name class 3.2, and so forth. The complete set of name classification is as follows:

Array (2) | Functions (3) | Operators (4) | Namespaces (9)

n.1 Variable Traditional Traditional Created by [ONS
n.2 Field D-fns D-ops Instance
n.3 Property Derived
Primitive
n.4 Class
n.5 N/A Interface
n.6 External External External Class
Shared
n.7 External Interface

In addition, values in R are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

442 Dyalog APL/W Language Reference

Variable (Name-Class 2.1)

Conventional APL arrays have name-class 2.1.

NUM<«88
CHAR<'Hello World'

ONC 1'NUM' 'CHAR'

2 2

ONC 'NUM' 'CHAR'
2.1 2.1

"MYSPACE'[NS '

MYSPACE.VAR<10

MYSPACE.[ONC'VAR'
2

MYSPACE .[INC<'VAR'
2.1

Field (Name-Class 2.2)

Fields defined by APL Classes have name-class 2.2.

:Class nctest
:Field Public pubFld
:Field pvtFld

V r<NC x
:Access Public
r<0NC x
\%
;éﬁdCIass A nctest

ncinst<«[ONEW nctest

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

ncinst.NC'pubF1d' 'pvtFild'
2.2 2.2

Note that an internal Method sees both Public and Private Fields in the Class Instance.
However, when viewed from outside the instance, only public fields are visible

ONC 'ncinst.pubF1d' 'ncinst.pvtFl1d'
2.2 0

Chapter 6 System Functions & Variables 443

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if [INC is executed inside
this space:

ncinst.[ONC'pubF1d' 'pvtFid'
2.2 0

Note that the names of Fields are reported as being unused if the argument to NC is
simple.

ncinst.[ONC 2 6p'pubFldpvtFid’
00

Property (Name-Class 2.3)

Properties defined by APL Classes have name-class 2.3.

:Class nctest
:Field pvtF1d«99

:Property pubProp
tAccess Public
V r<get
r<pvtfild

v
:EndProperty
:Property pvtProp

V r<get

r<pvtfid

v
:EndProperty
V r<NC x

tAccess Public
r<[NC x
v
;éﬁd01ass A nctest

ncinst<«[INEW nctest

The name-class of a Property, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.3.

ncinst.NC'pubProp' 'pvtProp'
2.3 2.3

444

Dyalog APL/W Language Reference

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties are
visible

ONC 'ncinst.pubProp' 'ncinst.pvtProp'
2.3 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if [INC is executed inside
this space:

ncinst.[NC 'pubProp' 'pvtProp'
2.3 0

Note that the names of Properties are reported as being unused if the argument to [INC
is simple.

ncinst.[ONC 2 6p'pubProppvtProp'’

External Properties (Name-Class 2.6)

Properties exposed by external objects (.Net and COM and the APL GUI) have name-
class 72.6.

OQUSING<«'System'

dt<[IJNEW DateTime (2006 1 1)

dt .[ONC 'Day' 'Month' 'Year'
2.6 72.6 2.6

‘ex' OWC 'OLEClient' 'Excel.Application'
ex.[INC 'Caption' 'Version' 'Visible'
2.6 2.6 72.6

'f'OWC'Form'
f .ONC'Caption' 'Size'
2.6 72.6

Note that the names of such Properties are reported as being unused if the argument to
ONC is simple.

f.ONC 2 7p'CaptionSize '

Chapter 6 System Functions & Variables 445

Defined Functions (Name-Class 3.1)

Traditional APL defined functions have name-class 3.1.

V R<AVG X
[1] Re(+/X)+pX
\'
AVG 1100
50.5
ONC'AVG'
3
ONCc'AVG'
3.1
'"MYSPACE '(JNS 'AVG'
MYSPACE.AVG 1100
50.5
MYSPACE.[JNC'AVG'
3
ONCc'MYSPACE.AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment
retains its name-class.

MEAN<AVG
ONC'AVG' 'MEAN'
3.1 3.1

Whereas, the name of a function that amalgamates a defined function with any other
functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN<AVGe,
ONC'AVG' 'VMEAN'
3.1 3.3

446 Dyalog APL/W Language Reference

D-Fns (Name-Class 3.2)

D-Fns (Dynamic Functions) have name-class 3.2
Avg<{(+/w)+pw}
ONC'Avg'
ONCe'Avg'

Derived Functions (Name-Class 3.3)

Derived Functions and functions created by naming a Primitive function have name-
class 3.3.

PLUS«+

SUM«+/

CUM«PLUS\

ONC'PLUS' 'SUM' 'CUM'
3.3 3.3 3.3

ONC 3 4p'PLUSSUM CUM '
333

Note that a function that is simply cloned from a defined function by assignment
retains its name-class. Whereas, the name of a function that amalgamates a defined
function with any other functions has the name-class of a Derived Function, i.e. 3.3.

V R«AVG X
[1] Re(+/X)+pX
v

MEAN<AVG

VMEAN<AVGe,

ONC'AVG' 'MEAN' 'VMEAN'
3.1 3.1 3.3

Chapter 6 System Functions & Variables 447

External Functions (Name-Class 3.6)

Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class ~ 3 . 6. Methods exposed by External Functions created using [JNA and [JSH all

have name-class 3 . 6.

'"F'OWC'Form'

F.ONC'GetTextSize' 'GetFocus'
“3.6 3.6

"EX'OWC'OLEClient' 'Excel.Application'
EX.ONC 'Wait' 'Save' 'Quit'
3.6 3.6 3.6

OJUSING«'System'

dt<[JNEW DateTime (2006 1 1)

dt .[ONC 'AddDays' 'AddHours'
3.6 3.6

‘beep'[INA'user32|MessageBeep i'

ONC'beep'
3
ONCc'beep'
3.6
"xutils'0SH"'
JFNS
avx box dbr getenv hex Ttom
mtol ss vtol

ONC'hex' 'ss'
3.6 3.6

ltov

448

Dyalog APL/W Language Reference

Operators (Name-Class 4.1)

Traditional Defined Operators have name-class 4.1.

VFILTERV
V VEC«(P FILTER)VEC n Select from VEC those elts .
[1] VEC<(P"VEC)/VEC A for which BOOL fn P is true.

v
. ONC'FILTER'
ONCec'FILTER'
b.1
D-Ops (Name-Class 4.2

D-Ops (Dynamic Operators) have name-class 4.2.

pred«<{JI0 OML«1 3 A Partitioned reduction.
o/ (a/1pa)cw

2 3 3 2 +pred 110

3 12 21 19
ONC'pred'
ONCc'pred'

4.

External Events (Name-Class 8.6)

Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-class
~8.6.

f«[ONEW'Form' ('Caption' 'Dyalog GUI Form')

f.ONC'Close' 'Configure' 'MouseDown'
8.6 8.6 8.6

x1<[JNEW'OLEC1ient'(c'ClassName' 'Excel.Application')
x1.0ONL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick

x1.0nc 'SheetActivate' 'SheetCalculate'
8.6 8.6

Chapter 6 System Functions & Variables 449

[JUSING«'System.Windows.Forms,system.windows.forms.d11"'
ONC,c'Form'

9.6
Form.[ONL -8

Activated BackgroundImageChanged BackColorChanged

Namespaces (Name-Class 9.1)

Plain namespaces created using JNS have name-class 9.1.

'"MYSPACE' [ONS "'
ONC'MYSPACE
9
ONCc'MYSPACE'
9.1

Note however that a namespace created by cloning, where the right argument to [JNS is
a[JOR of a namespace, retains the name-class of the original space.

'CopyMYSPACE '[DNS [JOR 'MYSPACE'
"CopyF 'OONS OOR 'F'[OWC'Form'

ONC'MYSPACE' 'F'
9.1 9.2

ONC'CopyMYSPACE' 'CopyF'
9.1 9.2

The Name-Class of .Net namespaces (visible through JUSING) is also 9.1

OUSING<«""
[ONC 'System' 'System.IO'
9.1 9.1

Instances (Name-Class 9.2)

Instances of Classes created using [INEW, and GUI objects created using [JWC all have
name-class 9.2.

MyInst<[NEW MyClass
ONC'MyInst'

ONCe'MyInst'
UrInst<[ONEW [OFIX ':Class' ':EndClass'

ONC 'MyInst' 'UrInst'
9.2 9.2

450 Dyalog APL/W Language Reference

'F'OWC 'Form'
'F.B' OWC 'Button'
ONC 2 3p'F F.B'

99
ONC'F' 'F.B'
9.2 9.2
F.ONC'B'
9
F.ONCe, 'B'
9.2
Instances of COM Objects whether created using [JWC or [JNEW also have name-class
9.2.
x1«[JNEW'OLEC1ient'(c'ClassName' 'Excel.Application')
‘XL'OWC'OLEC1ient' 'Excel.Application'
Onc'x1" "XL'
9.2 9.2
The same is true of Instances of .Net Classes (Types) whether created using [INEW or
.New.
JUSING«+'System'
dt«<[IJNEW DateTime (310TS)
DT«DateTime.New 3t[TS
ONC 'dt' 'DT'
9.2 9.2

Note that if you remove the GUI component of a GUI object, using the Detach method,
it reverts to a plain namespace.

F.Detach
ONCe, 'F'
9.1

Correspondingly, if you attach a GUI component to a plain namespace using the
monadic form of [JWC, it morphs into a GUI object

F.OWC 'PropertySheet’
ONCe, 'F'

Chapter 6 System Functions & Variables 451

Classes (Name-Class 9.4)

Classes created using the editor or [JF IX have name-class 9.4.
JED oMyClass

:Class MyClass
V r<NC x
:Access Public Shared
r<[INC x
\'
tEndClass A MyClass

[ONC 'MyClass'

9
[ONCc'MyClass'

9.4
OFIX ':Class UrClass' ':EndClass'
ONC 'MyClass' 'UrClass'

9.4 9.4

Note that the name of the Class is visible to a Public Method in that Class, or an
Instance of that Class.

MyClass.NC'MyClass'
MyClass.NCc'MyClass'

Interfaces (Name-Class 9.5)

Interfaces, defined by : Interface ... :EndInterface clauses, have name-
class 9.5.

452 Dyalog APL/W Language Reference

:Interface IGolfClub
:Property Club

V r<get

v

V set

v
:EndProperty

vV Shank<«Swing Params
v

:EndInterface A IGolfClub
ONC 'IGol1fClub'
ONC c'IGol1fClub'

External Classes (Name-Class 9.6)

External Classes (Types) .exposed by .Net have name-class 9.6.

OQUSING«'System' 'System.IO'

[ONC 'DateTime' 'File' 'DirectoryInfo'’
9.6 9.6 9.6

Note that referencing a .Net class (type) with [INC, fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the class when the name is next used.

External Interfaces (Name-Class 9.7)

External Interfaces exposed by .Net have name-class 9.7.

[JUSING«'System.Web.UI,system.web.d11'

ONC 'IPostBackDataHandler' 'IPostBackEventHandler'
9.7 9.7

Note that referencing a .Net Interface with [JNC, fixes the name of that Interface in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the Interface when the name is next used.

Chapter 6 System Functions & Variables 453

Native File Create: {R}«X [ONCREATE Y

This function creates a new file. Under Windows the file is opened in compatibility
mode. The name of the new file is specified by the left argument X which must be a
simple character vector or scalar containing a valid pathname for the file. Y is O or a
negative integer value that specifies an (unused) tie number by which the file may
subsequently be referred.

The shy result of UNCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:
tie«™1+|/0,0ONNUMS A With next available number,
file ONCREATE tie A ... create file.
to:
tie«file [ONCREATE O ma Create with first available
no.

Native File Erase: {R}«<X [ONERASE Y

This function erases (deletes) a native file. Y is a negative integer tie number
associated with a tied native file. X is a simple character vector or scalar containing the
name of the same file and must be identical to the name used when it was opened by
ONCREATE or ONTIE.

The shy result of INERASE is the tie number that the erased file had.

Example

file Onerase file [Ontie O

454

Dyalog APL/W Language Reference

New Instance: R<[INEW Y

ONEW creates a new instance of the Class or .Net Type specified by Y.

Y must be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a
.Net Type, or a character vector containing the name of a Dyalog GUI object. The
second item, if specified, contains the argument to be supplied to the Class or Type
Constructor.

The result R is a reference to a new instance of Class or Type Y.

For further information, see Interface Guide.

Class Example

:tClass Animal
v Name nm
:Access Public
:Implements Constructor
(ODF nm
\%
:EndClass A Animal

Donkey<[INEW Animal 'Eeyore'
Donkey
Eeyore

IfNEW is called with just a Class reference (i.e. without parameters for the
Constructor), the default constructor will be called. A default constructor is defined by
a niladic function with the : Implements Constructor attribute. For example,
the Animal Class may be redefined as:

:tClass Animal
vV NoName
tAccess Public
:Implements Constructor
[(ODF 'Noname'
v
v Name nm
:Access Public
:Implements Constructor
[(ODOF nm
\%
:EndClass A Animal

Horse<[INEW Animal
Horse
Noname

Chapter 6 System Functions & Variables 455

.Net Examples

OUSING<«'System' 'System.Web.Mail,System.Web.d11'
dt<[INEW DateTime (2006 1 1)
msg«[INEW MailMessage
ONC 'dt' 'msg' 'DateTime' 'MailMessage’
9.2 9.2 9.6 9.6

Note that .Net Types are accessed as follows.

If the name specified by the first item of Y would otherwise generate a VALUE

ERROR, and JUSING has been set, APL attempts to load the Type specified by Y from
the .Net assemblies (DLLs) specified in JUSING. If successful, the name specified by
Y is entered into the SYMBOL TABLE with a name-class of 9. 6. Subsequent
references to that symbol (in this case DateTime) are resolved directly and do not
involve any assembly searching.

F<(ONEW <'Form'
F<OONEW'Form'(('Caption' 'Hello')('Posn' (10 10)))

ONEW'Form' (('Caption' 'Hello')('Posn' (10 10)))
#.[Form]

Name List: R«{X}ONL Y

Y must be a simple numeric scalar or vector containing one or more of the values for
name-class See also the system function (JNC.

X is optional. If present, it must be a simple character scalar or vector. R is a list of the
names of active objects whose name-class is included in Y in standard sorted order.

If any element of Y is negative, positive values in Y are treated as if they were negative,
and R is a vector of character vectors. Otherwise, R is simple character matrix.

Furthermore, if [INL is being evaluated inside the namespace associated with a Class or
an Instance of a Class, and any element of Y is negative, R includes the Public names
exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If X is supplied, R contains only those names which begin with any character of X.
Standard sorted order is the collation order of JAV.

456 Dyalog APL/W Language Reference

If an element of Y is an integer, the names of all of the corresponding sub-name-classes
are included in R. For example, if Y contains the value 2, the names of all variables
(name-class 2.1), fields (2.2), properties (2.3) and external or shared variables (2.6) are
obtained. Otherwise, only the names of members of the corresponding sub-name-class
are obtained.

Examples:

ONL 2 3
A
FAST
FIND
FOO
Vv

"AV' ONL 2 3

ONL 79
Animal Bird BirdBehaviour Coin Cylinder
DomesticParrot Eeyore FishBehaviour Nickel Parrot
Penguin Polly Robin
ONL 79.3 a Instances
Eeyore Nickel Polly Robin
ONL 9.4 A Classes
Animal Bird Coin Cylinder DomesticParrot Parrot
Penguin
ONL 9.5 @A Interfaces
BirdBehaviour FishBehaviour

ONL can also be used to explore Dyalog GUI Objects, .Net types and COM objects.

Dyalog GUI Objects

ONL may be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

'F' OWC 'Form'

F.ONL -2 A Properties
Accelerator AcceptfFiles Active AlphaBlend AutoConf
Border BCol Caption

F.ONL -3 A Methods
Animate ChoosefFont Detach GetFocus GetTextSize
ShowSIP Wait

F.ONL -8 A Events
Close Create DragDrop Configure ContextMenu DropFiles
DropObjects Expose Help

Chapter 6 System Functions & Variables 457

.Net Classes (Types)
ONL can be used to explore .Net types.

When a reference is made to an undefined name, and JUSING is set, APL attempts to
load the Type from the appropriate .Net Assemblies. If successful, the name is entered
into the symbol table with name-class 9.6.

OJUSING«'System'

DateTime
(System.DateTime)

ONL -9
DateTime

ONC,c'DateTime’
9.6

The names of the Properties and Methods of a .Net Type may then be obtained using
ONL.

DateTime.[JNL -2 A Properties
MaxValue MinValue Now Today UtcNow

DateTime.[ONL -3 A Methods
get_Now get_Today get_UtcNow op_Addition op_Equality

In fact it is not necessary to make a separate reference first, because the expression
Type.[NL (where Type is a .Net Type) is itself a reference to Type. So, (with
OUSING still setto ‘System'):

Array.0NL -3
BinarySearch Clear Copy CreateInstance IndexOf
LastIndexOf Reverse Sort

ONL -9
Array DateTime

458 Dyalog APL/W Language Reference

Another use for ONL is to examine .Net enumerations. For example:

OJUSING«'System.Windows.Forms,system.windows.forms.d11"'

FormBorderStyle.[ONL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

FormBorderStyle.FixedDialog.value__

FormBorderStyle. ({w,[1.5]¢ w, 'c'.value__"}INL -2)
Fixed3D 2
FixedDialog 3
FixedSingle 1
FixedToolWindow 5
None 0
Sizable 4
SizableToolWindow 6

COM Objects

Once a reference to a COM object has been obtained, DNL may be used to obtain lists
of its Methods, Properties and Events.

x1<[INEW'OLEC1ient'(c'ClassName' 'Excel.Application')

x1.0ONL -2 A Properties
_Default ActiveCell ActiveChart ActiveDialog
ActiveMenuBar ActivePrinter ActiveSheet ActiveWindow

x1.0ONL -3 A Methods
_Evaluate _FindFile _Run2 _Wait _WSFunction
ActivateMicrosoftApp AddChartAutoFormat AddCustomList
Browse Calculate

ONL -9
X1

Chapter 6 System Functions & Variables 459

Native File Lock: {R}<«X [ONLOCK Y

This function assists the controlled update of shared native files by locking a range of
bytes.

Locking enables controlled update of native files by co-operating users. A process
requesting a lock on a region of a file will be blocked until that region becomes
available. A write-lock is exclusive, whereas a read-lock is shared. In other words, any
byte in a file may be in one of only three states:

e Unlocked
o Write-locked by exactly one process.
e Read-locked by any number of processes.

Y must be a simple integer scalar or vector containing 1, 2 or 3 items namely:
1. Tie number
2. Offset (from 0) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size

X is optional. If present, it must be a simple integer scalar or vector containing 1 or 2
items, namely:
1. Type: 0: Unlock, 1:Read lock, 2:Write lock.
2. Timeout: Number of seconds to wait for lock until TIMEOUT error. Defaults
to indefinite wait.

The shy result R is Y. To unlock the file, this value should subsequently be supplied in
the right argument to O[JNLOCK.

Examples:
2 [ONLOCK ~1 A write-lock whole file
0 [ONLOCK ~1 A unlock whole file.
1 ONLOCK ~1 A read (share) lock whole file.
2 [ONLOCK 'ONNUMS A write-lock all files.
0 [ONLOCK TONNUMS A unlock all files.

ONLOCK ~1 12 1
ONLOCK ~1 0 10
ONLOCK ~1 20

ONLOCK ~1 10 2
ONLOCK ~1 12 1

read-lock byte 12.

read-lock first 10 bytes.
write-lock from byte 20 onwards.
write-lock 2 bytes from byte 10
remove lock from byte 12.

ONNF-PF-
DOODODD

460

Dyalog APL/W Language Reference

To lock the region immediately beyond the end of the file prior extending it:

region«2 [INLOCK ~1, [NSIZE “1 na write-lock from EOF.
... ONAPPEND 1 A append bytes to file
... [ONAPPEND "1 A append bytes to file
0 ONLOCK ~1,region A release lock.

The left argument may have a second optional item that specifies a timeout value. If a
lock has not been acquired within this number of seconds, the acquisition is abandoned
and a TIMEOUT error reported.

2 10 Onlock 71 A wait up to 10 seconds for lock.

Notes:

There is no per-byte cost associated with region locking. It takes the same time to
lock/unlock a region, irrespective of that region’s size.

Different file servers implement locks in slightly different ways. For example on some
systems, locks are advisory. This means that a write lock on a region precludes other
locks intersecting that region, but doesn't stop reads or writes across the region. On the
other hand, mandatory locks block both other locks and read/write operations.
ONLOCK will just pass the server's functionality along to the APL programmer without
trying to standardise it across different systems.

All locks on a file will be removed by ONUNTIE.

Blocked locking requests can be freed by a strong interrupt. Under Windows, this
operation is performed from the Dyalog APL pop-up menu in the system tray.

Errors

In this release, an attempt to unlock a region that contains bytes that have not been
locked results in a DOMAIN error.

A LIMIT ERROR results if the operating system lock daemon has insufficient
resources to honour the locking request.

Some systems support only write locks. In this case an attempt to set a read lock will
generate a DOMAIN ERROR, and it may be appropriate for the APL programmer to
trap the error and apply a write lock.

No attempt will be made to detect deadlock. Some servers do this and if such a
condition is detected, a DEADLOCK error (1008) will be reported.

Chapter 6 System Functions & Variables 461

Native File Names: R<[JNNAMES

This niladic function reports the names of all currently open native files. R isa
character matrix. Each row contains the name of a tied native file padded if necessary
with blanks. The names are identical to those that were given when opening the files
with ONCREATE or NTIE. The rows of the result are in the order in which the files
were tied.

Native File Numbers: R<[JNNUMS

This niladic function reports the tie numbers associated with all currently open native
files. R is an integer vector of negative tie numbers. The elements of the result are in
the order in which the files were tied.

462

Dyalog APL/W Language Reference

Enqueue Event: {R}<{X}ONQ Y

This system function generates an event or invokes a method.

While APL is executing, events occur "naturally” as a result of user action or of
communication with other applications. These events are added to the event queue as
and when they occur, and are subsequently removed and processed one by one by [1DQ.

ONQ provides an "artificial" means to generate an event and is analogous to
OSIGNAL.

If the left argument X is omitted or is 0, [ONQ adds the event specified by Y to the
bottom of the event queue. The event will subsequently be processed by IDQ when it
reaches the top of the queue.

If X is 1, the event is actioned immediately by ONQ itself and is processed in exactly
the same way as it would be processed by [IDQ. For example, if the event has a
callback function attached, [INQ will invoke it directly. See [0DQ for further details.

Note that it is not possible for one thread to use 1 [INQ to send an event to another
thread.

If X is 2 and the name supplied is the name of an event, [INQ performs the default
processing for the event immediately, but does not invoke a callback function if there

1s one attached.

If X is 2 and the name supplied is the name of a (Dyalog APL) method, (ONQ invokes
the method. Its (shy) result is the result produced by the method.

If X is 3, [INQ invokes a method in an OLE Control. The (shy) result of JNQ is the
result produced by the method.

If X is 4, NQ signals an event from an ActiveXControl object to its host application.
The (shy) result of ONQ is the result returned by the host application and depends upon
the syntax of the event. This case is only applicable to ActiveXControl objects.

Y is a nested vector containing an event message. The first two elements of Y are :

Y[1] : Object name - a character vector

Y[2] : Event Type - a numeric scalar or character vector which specifies an
event or method.

Chapter 6 System Functions & Variables 463

Y [1] must contain the name of an existing object. If not, JNQ terminates with a
VALUE ERROR. IfY[2] specifies a standard event type, subsequent elements must
conform to the structure defined for that event type. If not, INQ terminates with a
SYNTAX ERROR. If Y[2] specifies a non-standard event type, Y[3] onwards (if
present) may contain arbitrary information. Although any event type not listed herein
may be used, numbers in the range 0-1000 are reserved for future extensions.

If ONQ is used monadically, or with a left argument of 0, its (shy) result is always an
empty character vector. If a left argument of 1 is specified, [INQ returns Y unchanged
or a modified Y if the callback function returns its modified argument as a result.

If the left argument is 2, (ONQ returns either the value 1 or a value that is appropriate.

Examples

A Send a keystroke ("A") to an Edit Field
ONQ 'TEST.ED' 'KeyPress' 'A'

A Iconify all top-level Forms
{ONQ w 'StateChange' 1} 'Form'[QWN'.'

A Set the focus to a particular field
ONQ 'TEST.ED3' 40

A Throw a new page on a printer

1 ONQ 'PR1' 'NewPage'

A Terminate [DQ under program control

'TEST'OWC 'Form' ... ('Event' 1001 1)

ObQ ‘TEST'

ONQ 'TEST' 1001 @ From a callback

A Call GetItemState method for a TreeView 'F.TV'

+2 ONQ'F.TV' 'GetItemState' 6
96

+2 ONQ'."' 'GetEnvironment' 'Dyalog'’
c:\Z\2\dyalog82

464

Dyalog APL/W Language Reference

Nested Representation: R«[NR Y

Y must be a simple character scalar or vector which represents the name of a function
or a defined operator.

If Y is a name of a defined function or defined operator, R is a vector of text vectors.
The first element of R contains the text of the function or operator header. Subsequent
elements contain lines of the function or operator. Elements of R contain no
unnecessary blanks, except for leading indentation of control structures and the blanks
which precede comments.

If Y is the name of a variable, a locked function or operator, an external function or a
namespace, or is undefined, R is an empty vector.
Example

VR<MEAN X A Average
[1] R«(+/X)+pX
v

+F<[JNR 'MEAN'
R«MEAN X AAverage Re(+/X)+pX

pF
2

DISPLAY F
| | ReMEAN X n Average| | Re<(+/X)#pX]| |
I b e e e e e e e e e e e e e e o L]
|6 __)

The definition of [INR has been extended to names assigned to functions by
specification (<), and to local names of functions used as operands to defined
operators. In these cases, the result of [JNR is identical to that of JCR except that the
representation of defined functions and operators is as described above.

Chapter 6 System Functions & Variables 465

Example

AVG<MEAN-o-,

+F<[JNR"AVG'
A Average R«(+/X)+pX o,

R<MEAN X

pF

DISPLAY F

Native File Read:

R<[ONREAD Y

This monadic function reads data from a native file. Y is a 3- or 4-element integer
vector whose elements are as follows:

[1] negative tie number,

[2] conversion code (see below),
[3] count,

[4] start byte, counting from 0.

Y[2] specifies conversion to an APL internal form as follows. Note that the internal
formats for character arrays differ between the Unicode and Classic Editions.

Value

Number of bytes read

Result Type

Result shape

11
80
821
83
160
163
320
323
645

count
count
count
count
count
count
count
count
count

o FFDNN
X X X X X

1 bit Boolean

8 bits character
8 bits character

8 bits integer
16-bits character
16 bits integer
32-bits character
32 bits integer

64bits floating

8 x count
count
count
count
count
count
count
count
count

Unicode Edition : Conversion Codes

1 Conversion code 82 is permitted in the Unicode Edition for compatibility and causes 1-byte
data on file to be translated (according to ONXLATE) from AV indices into normal (Unicode)
characters of type 80, 160 or 320.

466 Dyalog APL/W Language Reference

Value Number of bytes read Result Type Result shape
11 count 1 bit Boolean 8 x count
82 count 8 bits character count
83 count 8 bits integer count
163 2 x count 16 bits integer count
323 4 x count 32 bits integer count
645 8 x count 64bits floating count

Classic Edition : Conversion Codes
Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

If Y[4] is omitted, data is read starting from the current position in the file (initially,
0).
Example

DATA<[ONREAD ~1 160 (0.5x[ONSIZE ~1) 0 A Unicode
DATA<[INREAD ~1 82 ([NSIZE ~1) O A Classic

Native File Rename: {R}«<X [ONRENAME Y

[ONRENAME is used to rename a native file.

Y is a negative integer tie number associated with a tied native file. X is a simple
character vector or scalar containing a valid (and unused) file name.

The shy result of ONRENAME is the tie number of the renamed file.

Native File Replace: {R}«X [ONREPLACE Y

ONREPLACE is used to write data to a native file, replacing data which is already there.
X must be a simple homogeneous APL array containing the data to be written.

Y is a 2- or 3-element integer vector whose elements are as follows:

[1] negative tie number,
[2] start byte, counting from 0, at which the data is to be written,
[3] conversion code (optional).

See [ONREAD for a list of valid conversion codes.

Chapter 6 System Functions & Variables 467

The shy result is the position within the file of the end of the record, or, equivalently,
the start of the following one. Used, for example, in:

A Replace sequentially from indx.
{o. ONREPLACE tie w}/vec,indx

Unicode Edition

Unless you specify the data type in Y[2], a character array will by default be written
using type 80. .

If the data will not fit into the specified character width (bytes) ONREPLACE will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or 320)
in order to write Unicode characters whose code-point are in the range 256-65535 and
>65535 respectively.

Example
n<'test'[ONTIE O A See [ONAPPEND example

ONREAD n 80 3 O
abc

ONREAD n 160 7
Tagépva

O«'eoctiatdpio'ONREPLACE n 3
DOMAIN ERROR
O«'eotiatépio'ONREPLACE n 3

A

O«'eotiatépio'[ONREPLACE n 3 160
23

ONREAD n 80 3 0
abc

ONREAD n 160 10
eoTt1aTtOpio

For compatibility with old files, you may specify that the data be converted to type 82
on output. The conversion (to [JAV indices) will be determined by the local value of
OAvU.

468

Dyalog APL/W Language Reference

Native File Resize: {R}«X [ONRESIZE Y

This function changes the size of a native file.

Y is a negative integer tie number associated with a tied native file.

X is a single integer value that specifies the new size of the file in bytes. If X is smaller
than the current file size, the file is truncated. If X is larger than the current file size,

the file is extended and the value of additional bytes is undefined.

The shy result of ONRESIZE is the tie number of the resized file.

Create Namespace: {R}«<{X}ONS Y

If specified, X must be a simple character scalar or vector identifying the name of a
namespace.

Y is either a character array which represents a list of names of objects to be copied into
the namespace, or is an array produced by the [JOR of an existing namespace. In the
first case, Y must be a simple character scalar, vector, matrix or a nested vector of
character vectors identifying zero or more workspace objects to be copied into the
namespace X. The identifiers in X and Y may be simple names or compound names
separated by ' . "' and including the names of the special namespaces '#', '##' and

The namespace X is created if it doesn't already exist. If the name is already in use for
an object other than a namespace, APL issues a DOMAIN ERROR.

If X is omitted, an unnamed namespace is created.

The objects identified in the list Y are copied into the namespace X.

If X is specified, the result R is the full name (starting #. or JSE .) of the namespace

X. If X is omitted, the result R is a namespace reference, or ref, to an unnamed
namespace.

System Functions & Variables 469

Chapter 6

Examples

+ [X IDNS (] e
#.X

+'X'[ONS'VEC' 'UTIL.DISP'é
#.X

)CS X ¢
#.X

+"'Y'[ONS'#.MAT' '"##.VEC' &
#.X.Y

+"#.UTIL'ONS'Y.MAT' é
#.UTIL

+"#'0ONS'Y" ¢
#

+" '[ONS"#.MAT' é
#.X

+ 1 IDNS [} é
#.X

+'Z'[ONS [JOR'Y' é
#.X.1

NONAME<«[INS "' €

NONAME

#.[Namespace]

DATA<[INS "4pc " 8

:
namespaces
DATA

#.[Namespace] #.[Namespace]
#.[Namespace]

Create namespace X.

Copy VEC and DISP to X.
Change to namespace X.
Create #.X.Y © into it
Copy MAT from Y to #.UTIL.
Copy namespace Y to root.
Copy MAT to current space.
Display current namespace.

Create namespace from [OR.

Create unnamed namespace

Create 4t-element vector of
distinct unnamed

#.[Namespace]

470 Dyalog APL/W Language Reference

Namespace Indicator: R<[NSI

R is a nested vector of character vectors containing the names of the spaces from which
functions in the state indicator were called (pONSI«->p[SI).

Note that [ONSI contains the names of spaces from which functions were called not
those in which they are currently running.

Example
YOBJECTS
XX YY
OVR 'YY.FOO'
vV FOO
[1] 0SE.GOO
A%
OVR'OSE.GOO'
v GOO
[1] 0sI,[1.5]0ONSI
\%
)CS XX
#.XX
#.YY.FOO
GOO #.YY
FOO #.XX

Native File Size: R<[NSIZE Y

This reports the size of a native file.

Y is a negative integer tiec number associated with a tied native file. The result R is the
size of the file in bytes.

Chapter 6 System Functions & Variables 47

Native File Tie: {R}«X [ONTIE Y

ONTIE opens a native file.

X is a simple character vector or scalar containing a valid pathname for an existing
native file.

Y is a 1- or 2-element vector. Y[1] is a negative integer value that specifies an
(unused) tie number by which the file may subsequently be referred. Y[2] is optional
and specifies the mode in which the file is to be opened. This is an integer value
calculated as the sum of 2 codes. The first code refers to the type of access needed
from users who have already tied the native file. The second code refers to the type of
access you wish to grant to users who subsequently try to open the file while you have

it open.
Needed from existing users Granted to subsequent users
0 read access 0 compatibility mode
1 write access 16 no access (exclusive)
2 read and write access 32 read access

48 write access

64 read and write access

On Unix systems, the first code (16 |[mode) is passed to the open (2) call as the
access parameter. See include file fcntl . h for details.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:
tie«< 1+ /0,[ONNUMS A With next available number,
file ONTIE tie A ... tie file.
to:
tie«file [NTIE O A Tie with first available no.
Example
ntie<{ A tie file and return tie no.
o2+64 A default all access.
w Ontie 0 o A return new tie no.

472 Dyalog APL/W Language Reference

Null Item:

R<[NULL

This is a reference to a null item, such as may be returned across the COM interface to
represent a null value. An example might be the value of an empty cell in a
spreadsheet.

ONULL may be used in any context that accepts a namespace reference, in particular:

e As the argument to a defined function

e Asanitem of an array.
As the argument to those primitive functions that take

character data arguments, for example: =, #, =, , p, 2,

c’

Example

"EX'OWC'OLEC1ient' 'Excel.Application'
WB<+EX.Workbooks.Open 'simple.xls'

(WB.Sheets.Item 1).UsedRange.Value2
[Nul1]l [Null]l ([Null] [Nulll [Null]
[Nul1] Year [Null1] [Null]l ([Null]
[Null] 1999 2000 2001 2002
[Nul1] [Null]l [Nul1]l [Null] [Null]

Sales 100 76 120 150
[Nul1] [Nul1]l [Null]l [Null] [Nulll]
Costs 80 60 100 110
[Nu11] [Nul1]l [Null]l [Null] [Null]
Margin 20 16 20 40

To determine which of the cells are filled , you can compare the array with INULL.

ONULL#Z"(WB.Sheets.Item 1).UsedRange.Value2
000O00O0
01000
01111
000O00O0
11111
000O00O0
11111
000O00O0
11111

Chapter 6 System Functions & Variables 473

Native File Untie: {R}«[ONUNTIE Y

This closes one or more native files. Y is a scalar or vector of negative integer tie
numbers. The files associated with elements of Y are closed. Native file untie with a
zero length argument (ONUNTIE @) flushes all file buffers to disk - see JFUNTIE for
more explanation.

The shy result of INUNTIE is a vector of tie numbers of the files actually untied.

Native File Translate: {R}<{X}ONXLATE Y

This associates a character translation vector with a native file or, if Y is 0, with the use
by [DR.

A translate vector is a 256-element vector of integers from 0-255. Each element maps
the corresponding [JAV position onto an ANSI character code.

For example, to map JAV[17+[0I0] onto ANSI 'a' (code 97), element 17 of the
translate vector is set to 97.

ONXLATE is a non-Unicode (Classic Editon) feature and is retained in the Unicode
Edition, only for compatibility.

Y is either a negative integer tic number associated with a tied native file or 0. IfY is
negative, monadic ONXLATE returns the current translation vector associated with the
corresponding native file. If specified, the left argument X is a 256-element vector of
integers that specifies a new translate vector. In this case, the old translate vector is
returned as a shy result. IfY is 0, it refers to the translate vector used by [IDR to
convert to and from character data.

The system treats a translate vector with value (1256)-[JI0 as meaning no
translation and thus provides raw input/output bypassing the whole translation process.

The default translation vector established at ONTIE or ONCREATE time, maps [JAV
characters to their corresponding ANSI positions and is derived from the mapping

defined in the current output translation table (normally WIN.DOT)

Between them, ANSI and RAW translations should cater for most uses.

474 Dyalog APL/W Language Reference

Unicode Edition

ONXLATE is relevant in the Unicode Edition only to process Native Files that contain
characters expressed as indices into [JAV, such as files written by the Classic Edition.

In the Unicode Edition, when reading data from a Native File using conversion code
82, incoming bytes are translated first to [JAV indices using the translation table
specified by ONXLATE, and then to type 80, 160 or 320 using JAVU. When writing
data to a Native File using conversion code 82, characters are converted using these
two translation tables in reverse.

Sign Off APL: OOFF

This niladic system function terminates the APL session, returning to the shell
command level . The active workspace does not replace the last continuation
workspace.

Object Representation: R«[OR Y

0OR converts a function, operator or namespace to a special form, described as its
object representation, that may be assigned to a variable and/or stored on a component
file. Classes and Instances are however outside the domain of [JOR.

Taking the [JOR of a function or operator is an extremely fast operation as it simply
changes the type information in the object’s header, leaving its internal structure
unaltered. Converting the object representation back to an executable function or
operator using [JF X is also very fast. [JOR is therefore the recommended form for
storing functions and operators on component files and is significantly faster than using
OCR, OVR or ONR.

OOR may also be used to convert a namespace (either a plain namespace or a named
GUI object created by JWC) into a form that can be stored in a variable or on a
component file. The namespace may be reconstructed using [INS or OWC with its
original name or with a new one. [JOR may therefore be used to clone a namespace or
GUI object.

Y must be a simple character scalar or vector which contains the name of an APL
object.

If Y is the name of a variable, the result R is its value. In this case, R<[JOR Y is
identical to R«¢Y.

Chapter 6 System Functions & Variables 475

Otherwise, R is a special form of the name Y, re-classified as a variable. The rank of R
is O (R is scalar), and the depth of R is 1. These unique characteristics distinguish the
result of [JOR from any other object. The type of R (€R) is itself. Note that although R
is scalar, it may not be index assigned to an element of an array unless it is enclosed.

If'Y is the name of a function or operator, R is in the domain of the monadic functions
Depth (=), Disclose (2), Enclose (<), Rotate($), Transpose(R), Index ing([1), Format
(%), Identity (+), Shape (p), Type (€) and Unique (v), of the dyadic functions
Assignment («), Without (~), Index Of (1), Intersection (n), Match (=), Membership
(€), Not Match (#) and Union (v), and of the monadic system functions Canonical
Representation (OCR), Cross-Reference (OREF S), Fix (OF X), Format (OFMT), Nested
Representation (ONR) and Vector Representation (OVR).

Nested arrays which include the object representations of functions and operators are in
the domain of many mixed functions which do not use the values of items of the arrays.

Note that a [JOR object can be transmitted through an 'APL-style' TCP socket. This
technique may be used to transfer objects including namespaces between APL sessions.

The object representation forms of namespaces produced by JOR may not be used as

arguments to any primitive functions. The only operations permitted for such objects
(or arrays containing such objects) are [JEX, JFAPPEND, JFREPLACE, NS, and [JWC.

Example

F<0OR OFX'R«FO0' 'R«10'

pF

ppF
0

=F
1

F=eF
1

The display of the [JOR form of a function or operator is a listing of the function or
operator. If the JOR form of a function or operator has been enclosed, then the result
will display as the operator name preceded by the symbol V. It is permitted to apply
0OR to a locked function or operator. In this instance the result will display as for the
enclosed form.

476 Dyalog APL/W Language Reference

Examples

F
vV R«<FOO
[1] R«<10
v

<F
vFOO

0OLOCK'FOO'

(OR'FOO'
VFOO

A<15
A[3]«cF

A
12 VFOO 4 5

For the JOR forms of two functions or operators to be considered identical, their
unlocked display forms must be the same, they must either both be locked or unlocked,
and any monitors, trace and stop vectors must be the same.

Example
F<(OR [FX 'R«A PLUS B' 'R«A+B'

F=[OR 'PLUS'

1 0STOP 'PLUS'
F=[OR 'PLUS'

Chapter 6 System Functions & Variables a77

Namespace Examples

The following example sets up a namespace called UTILS, copies into it the contents
of the UTIL workspace, then writes it to a component file:

)CLEAR
CLEAR WS
JNS UTILS
#.UTILS
)CS UTILS
#.UTILS
YCOPY UTIL
C:\WDYALOG\WS\UTIL SAVED FRI MAR 17 12:48:06 1995
)CS
#
'"ORTEST' OFCREATE 1
(OOR'UTILS')OFAPPEND 1

The namespace can be restored with NS, using either the original name or a new one:

YCLEAR
CLEAR WS

'UTILS' ONS OFREAD 1 1
#.UTILS

YCLEAR
CLEAR WS

"NEWUTILS' [ONS OFREAD 1 1
#.NEWUTILS

This example illustrates how [JOR can be used to clone a GUI object; in this case a
Group containing some Button objects. Note that [JWC will accept only a [JOR object
as its argument (or preceded by the [1Typel] keyword). You may not specify any other
properties in the same OWC statement, but you must instead use [JWS to reset them
afterwards.

"F'OWC'Form'

'F.G1' [OWC 'Group' '&0ne' (10 10)(80 30)
'F.G1.B2'OWC'Button' '&Blue' (40 10)('Style' 'Radio')
'F.G1.B3'OWC'Button' '&Green' (60 10)('Style' 'Radio')
'F.G1.B1'[JWC'Button' '&Red' (20 10)('Style' 'Radio')
'F.G2' OWC OR 'F.G1'

'F.G2' [OWS ('Caption' 'Two')('Posn' 10 60)

Note too that JWC and [JNS may be used interchangeably to rebuild pure namespaces
or GUI namespaces from a [JOR object. You may therefore use [JNS to rebuild a Form
or use [JWC to rebuild a pure namespace that has no GUI components.

478

Dyalog APL/W Language Reference

Search Path: OPATH

OPATH is a simple character vector representing a blank-separated list of namespaces.
It is approximately analogous to the PATH variable in Windows or UNIX

The OPATH variable can be used to identify a namespace in which commonly used
utility functions reside. Functions or operators (NOT variables) which are copied into
this namespace and exported (see [JEXPORT) can then be used directly from anywhere
in the workspace without giving their full path names.

Example

To make the DISPLAY function available directly from within any namespace.

A Create and reference utility namespace.
OPATH«'Ose.util'Ons""’

A Copy DISPLAY function from UTIL into it.
'DISPLAY'Ose.util.0cy'UTIL'

A (Remember to save the session to file).

In detail, JPATH works as follows:

When a reference to a name cannot be found in the current namespace, the system
searches for it from left to right in the list of namespaces indicated by JPATH. In each
namespace, if the name references a defined function (or operator) and the export type
of that function is non-zero (see [JEXPORT), then it is used to satisfy the reference. If
the search exhausts all the namespaces in JPATH without finding a qualifying
reference, the system issues a VALUE ERROR in the normal manner.

The special character t stands for the list of namespace ancestors:

HHE R HH HELOHEHY
In other words, the search is conducted upwards through enclosing namespaces,
emulating the static scope rule inherent in modern block-structured languages.

Note that the JPATH mechanism is used ONLY if the function reference cannot be
satisfied in the current namespace. This is analogous to the case when the Windows or
UNIX PATH variable begins witha '.".

Chapter 6 System Functions & Variables

479

Examples
OPATH Search in

1. 'Ose.util’ Current space, then
Ose.util, then
VALUE ERROR

2. "t Current space
Parent space: ##
Parent's parent space: ##.##
Root: # (or Ose if current space

was inside [se)

VALUE ERROR

3. 'util t [se.util’ Current space

util (relative to current space)
Parent space: ##

ééét: # or [se
Ose.util
VALUE ERROR

Note that JPATH is a session variable. This means that it is workspace-wide and
survives) LOAD and) CLEAR. It can of course, be localised by a defined function or
operator.

480

Dyalog APL/W Language Reference

Program Function Key: R«{X}OPFKEY Y

OPFKEY is a system function that sets or queries the programmable function keys.
OPFKEY associates a sequence of keystrokes with a function key. When the user
subsequently presses the key, it is as if he had typed the associated keystrokes one by
one.

Y is an integer scalar in the range 0-255 specifying a programmable function key. If X
is omitted the result R is the current setting of the key. If the key has not been defined
previously, the result is an empty character vector.

If X is specified it is a simple or nested character vector defining the new setting of the
key. The value of X is returned in the result R.

The elements of X are either character scalars or 2-element character vectors which
specify Input Translate Table codes.

Programmable function keys are recognised in any of the three types of window
(SESSION, EDIT and TRACE) provided by the Dyalog APL development
environment. [JSR operates with the 'raw' function keys and ignores programmed
settings.

Note that key definitions can reference other function keys.

The size of the buffer associated with OPFKEY is specified by the pfkey size
parameter.

Examples

(")FNS',c'ER') [PFKEY 1
YFNS ER

DISPLAY [PFKEY 1

(")VARS',c'ER') [OPFKEY 2
JVARS ER

‘F1"' 'F2' [OPFKEY 3 A Does)FNS and)VARS
F1 F2

Chapter 6 System Functions & Variables 481

Print Precision: dpP

0PP is the number of significant digits in the display of numeric output.

OPP may be assigned any integer value in the range 1 to 17. The value in a clear
workspace is 10. Note that in all Versions of Dyalog APL prior to Version 11.0, the
maximum value for PP was 16.

OPP is used to format numbers displayed directly. It is an implicit argument of
monadic function Format (%), monadic [JFMT and for display of numbers via [J and []
output. (PP is ignored for the display of integers.

Examples:
OPP«10

+3 6
0.3333333333 0.1666666667

OpPp«3

+3 6
0.333 0.167

If PP is set to its maximum value of 17, floating-point numbers may be converted
between binary and character representation without loss of precision. In particular, if
OPP is 17 and (CT is O (to ensure exact comparison), for any floating-point number N
the expression N=¢ 3N is true. Note however that denormal numbers are an exception
to this rule.

Numbers, very close to zero, in the range 2.2250738585072009E 308 to
4.9406564584124654E 324 are called denormal numbers.

Such numbers can occur as the result of calculations and are displayed correctly.
However, denormals cannot be specified as literals and are converted to zero on input.

Numbers below the lower end of this range (4.94E 324) are indistinguishable from
zero in IEEE double floating point format.

482 Dyalog APL/W Language Reference

Print Width: OPW

0PW is the maximum number of output characters per line before folding the display.
0OPW may be assigned any integer value in the range 30 to 32767.

If an attempt is made to display a line wider than [JPW, then the display will be folded
at or before the JPW width and the folded portions indented 6 spaces. The display of a
simple numeric array may be folded at a width less than JPW so that individual
numbers are not split.

OPW only affects output, either direct or through [output. It does not affect the result
of the function Format (%), of the system function [JFMT, or output through the system
functions JARBOUT and [JARBIN, or output through [.

Session window is resized. In these circumstances, a value assigned to JPW will only
be effective until the Session Window is next resized.
Examples

OPW<30

0«3p=3

0.3333333333 0.3333333333
0.3333333333

Chapter 6 System Functions & Variables 483

Cross References: R<[JREFS Y

Y must be a simple character scalar or vector, identifying the name of a function or
operator, or the object representation form of a function or operator (see [JOR). R is a
simple character matrix, with one name per row, of identified names in the function or
operator in Y excluding distinguished names of system constants, variables or
functions.

Example

OVR'OPTIONS'
vV OPTIONS;OPTS;INP
[1] A REQUESTS AND EXECUTES AN OPTION
[2] OPTS «'INPUT' 'REPORT' 'END'
[3] IN:INP<ASK'OPTION:'
(4] +EXp~(<INP)eOPTS
] "INVALID OPTION. SELECT FROM',OPTS ¢ -IN
] EX:>EX+OPTS1<INP
[7] INPUT ¢ -IN
] REPORT ¢ -IN
] END:
v

OREFS'OPTIONS'

INP
INPUT
OPTIONS
OPTS
REPORT

IfY is locked or is an External Function, R contains its name only. For example:

OLOCK 'OPTIONS' ¢ [REFS 'OPTIONS'
OPTIONS

If Y is the name of a primitive, external or derived function, R is an empty matrix with
shape 0 0.

484

Dyalog APL/W Language Reference

Random Link: ORL

ORL is used or set to establish a base for generating random numbers.

ORL may be assigned any integer value in the range 1 to 2147483646. The value in a
clear workspace is 16807.

Repeatable results can be obtained from Roll or Deal if RL is set to a particular value
first.

ORL is used and set implicitly by the functions Roll and Deal (?).

Examples

OrRL
16807

79 99
275

79

OrRL
984943658

ORL<«16807

79 9 9
275

Response Time Limit: ORTL

A non-zero value in [JRTL places a time limit, in seconds, for input requested via [,
OARBIN, and OSR. RTL may be assigned any integer in the range 0 to 32767. The
value is a clear workspace is 0.

Example

ORTL«5 ¢ [J«'FUEL QUANTITY?' o R<[]
FUEL QUANTITY?
TIMEOUT

ORTL«5 ¢ [J«'FUEL QUANTITY?' o R<[]

Chapter 6 System Functions & Variables 485

Save Workspace: {R}«{X}OSAVE Y

Y must be a simple character scalar or vector, identifying a workspace name. R isa
simple logical scalar. The active workspace is saved with the given name in Y. In the
active workspace, the value 1 is returned. The result is suppressed if not used or
assigned.

The optional left argument X is either 0 or 1. If X is omitted or 1, the saved version of
the workspace has execution suspended at the point of exit from the [JSAVE function.
If the saved workspace is subsequently loaded by [JLOAD, execution is resumed, and
the value 0 is returned if the result is used or assigned, or otherwise the result is
suppressed. In this case, the latent expression value (0L X) is ignored.

If X is 0, the workspace is saved without any State Indicator in effect. The effect is the
same as if you first executed)RESET and then) SAVE. In this case, when the
workspace is subsequently loaded, the value of the latent expression (L X) is honoured
if applicable.

A DOMAIN ERROR is reported if the name in Y is not a valid workspace name, or the
reference is to an unauthorised directory.

OSAVE will fail and issue DOMAIN ERROR if any threads (other than the root thread
0) are running.

Note that the values of all system variables (including [JSM) and all GUI objects are
saved.

Example

(2'SAVED' 'ACTIVE' [OIO+[JSAVE'TEMP']),"' WS'
ACTIVE WS

OLOAD 'TEMP'
SAVED WS

Screen Dimensions: R<[SD

0SD is a 2-element integer vector containing the number of rows and columns on the
screen, or in the USER window.

For asynchronous terminals under UNIX, the screen size is taken from the terminal
database terminfo or termcap.

In window implementations of Dyalog APL, [JSD reports the current size (in
characters) of the USER window or the current size of the SM object, whichever is
appropriate.

486

Dyalog APL/W Language Reference

Session Namespace: [SE

(SE is a system namespace. Its GUI components (MenuBar, ToolBar, and so forth)
define the appearance and behaviour of the APL Session window and may be
customised to suit individual requirements.

[SE is maintained separately from the active workspace and is not affected by) LOAD
or)CLEAR. It is therefore useful for containing utility functions. The contents of [JSE
may be saved in and loaded from a .DSE file.

See User Guide for further details.

Execute (UNIX) Command: {R}<«[SH Y

OSH executes a UNIX shell or a Windows Command Procesor. [JSH is a synonym of
(JCMD. Either function may be used in either environment (UNIX or Windows) with
exactly the same effect. [JSH is probably more natural for the UNIX user. This section
describes the behaviour of JSH and [JCMD under UNIX. See [JCMD for a discussion of
the behaviour of these system functions under Windows.

Y must be a simple character scalar or vector representing a UNIX shell command. R
is a nested vector of character vectors.

Y may be any acceptable UNIX command. It could cause another process to be
entered, such as sed or vi. If the command does not return a result, R is €' ' but the
result is suppressed if not explicitly used or assigned. If the command has a non-zero
exit code, then APL will signal a DOMAIN ERROR. If the command returns a result
and has a zero exit code, then each element of R will be a line from the standard output
(stdout) of the command. Output from standard error (stderr) is not captured unless
redirected to stdout.

Examples

OSH'1s'
FILES WS temp

OSH 'rm WS/TEST'

0OSH 'grep bin /etc/passwd ; exit 0'
bin:l:2:2::/bin:

OSH 'apl MYWS <inputfile >outl 2>out2 &'

Chapter 6 System Functions & Variables 487

Start (UNIX) Auxiliary Processor: X OSH Y

Used dyadically, [JSH starts an Auxiliary Processor. The effect, as far as the APL user
is concerned, is identical under both Windows and UNIX although there are
differences in the method of implementation. [JSH is a synonym of [JCMD. Either
function may be used in either environment (UNIX or Windows) with exactly the same
effect. [JSH is probably more natural for the UNIX user. This section describes the
behaviour of [JSH and JCMD under UNIX. See [JCMD for a discussion of the behaviour
of these system functions under Windows.

X must be a simple character vector. Y may be a simple character scalar or vector, or a
nested character vector.

0SH loads the Auxiliary Processor from the file named by X using a search-path
defined by the environment variable WSPATH.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same way
as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are piped
to the AP for processing. If the function returns a result, APL halts while the AP is
processing and waits for the result. If not it continues processing in parallel.

The syntax of dyadic [JSH is similar to the UNIX execl(2) system call, where
'taskname' is the name of the auxiliary processor to be executed and arg0 through
argn are the parameters of the calling line to be passed to the task, viz.

‘taskname' [SH 'arg0' 'argtl' ... 'argn'
See User Guide for further information.

Examples
"'xutils' OSH 'xutils' 'ss' 'dbr'

"/bin/sh' OSH 'sh' '-¢' 'adb test'

488

Dyalog APL/W Language Reference

Shadow Name: [OSHADOW Y

Y must be a simple character scalar, vector or matrix identifying one or more APL
names. For a vector Y, names are separated by one or more blanks. For a matrix Y,
each row is taken to be a single name.

Each valid name in Y is shadowed in the most recently invoked defined function or
operator, as though it were included in the list of local names in the function or
operator header. The class of the name becomes 0 (undefined). The name ceases to be
shadowed when execution of the shadowing function or operator is completed.

Shadow has no effect when the state indicator is empty.

If a name is ill-formed, or if it is the name of a system constant or system function,
DOMAIN ERROR is reported.

If the name of a top-level GUI object is shadowed, it is made inactive.

Example

OVR'RUN'
v NAME RUN FN
[1] A RUNS FUNCTION NAMED <NAME> DEFINED
[2] A FROM REPRESENTATION FORM <FN>
[3] OSHADOW NAME
(4] ¢[FX FN
v

0 [STOP 'RUN'

‘FOO' RUN 'R«FOO0' 'R<«10'
10

RUN[O]

)SINL
RUN[O]* FOO FN NAME

~{LC
FOO

VALUE ERROR
FOO
A

Chapter 6 System Functions & Variables 489

State Indicator: R«[SI

R is a nested vector of vectors giving the names of the functions or operators in the
execution stack.

Example

)SI
PLUS[2]x

MATDIV[4]
FOO[1]%
$

0s1I
PLUS MATDIV FOO

. (pOLC)=p0SI

If execution stops in a callback function, JDQ will appear on the stack, and may occur
more than once

)SI
ERRFN[7]x
0oQ
CALC
(oQ
MAIN

To edit the function on the top of the stack:
Oeb -0sI
The name of the function which called this one:
514[]SI
To check if the function AN is pendent:
((cAN)€14[0SI)/'Warning : ',AN,' is pendent'
See also [XSI.

490

Dyalog APL/W Language Reference

Signal Event: {X}OSIGNAL Y

Y must be a single positive integer scalar or an empty vector. X is optional. If present,
X must be a simple character scalar or vector, or an object reference. If Y is en empty
vector, nothing is signalled.

Y is taken to be an event number in the range 1-999. X is an optional text message. If
omitted, the standard event message shown for the corresponding event number in
Figure 7(i) or 7(ii) is assumed. Ifthere is no standard message, a message of the form
ERROR NUMBER n is composed, where n is the event number in Y.

The effect of the system function is to interrupt execution. The state indicator is cut
back to exit from the function or operator containing the line that invoked JSIGNAL or
the Execute (&) expression that invoked [JSIGNAL, and an error is then generated.

An error interrupt may be trapped if the system variable JTRAP is set to intercept the
event. Otherwise, the standard system action is taken (which may involve cutting back
the state indicator further if there are locked functions or operators in the state
indicator). The standard event message is replaced by the text given in X, if present.

Example

OVR'DIVIDE'
V R<A DIVIDE B;0TRAP

[1] OTRAP<«11 'E' '-ERR'

[2] R«A+B ¢ -0

[3] ERR: 'DIVISION ERROR' [SIGNAL 11
\%

2 4+ 6 DIVIDE O
DIVISION ERROR
2 4+ 6 DIVIDE O
A

If you are using the Microsoft .Net Framework, you may use [JSIGNAL to throw an
exception by specifying a value of 90 in Y. In this case, if you specify the optional left
argument X , it must be a reference to a .Net object that is or derives from the Microsoft
Net class System.Exception. The following example illustrates a constructor function
CTOR that expects to be called with a value for JIO (0 or 1)

v CTOR IO;EX
[1] :If I0e0 1

[2] dI1o0<«IO0

[3] :Else

[4] EX<ArgumentException.New'IO must be 0 or 1'
[5] EX OSIGNAL 90

[6] :EndIf
v

Chapter 6 System Functions & Variables 491

Size of Object: R<OSIZE Y

Y must be a simple character scalar, vector or matrix. A scalar or vector is treated as a
single row matrix. Each row is taken to be an APL name. R is a simple integer vector
of non-negative elements and of shape 117211 1,pY.

If the name in a row of Y identifies an object with an active referent, the workspace
required in bytes by that object is returned in the corresponding element of R.
Otherwise, 0 is returned in that element of R.

The result returned for an external variable is the space required to store the external
array. The result for a system constant, variable or function is 0. The result returned
for a GUI object gives the amount of workspace needed to store it, but excludes the
space required for its children.

Note: Wherever possible, Dyalog APL 'shares' the whole or part of a workspace object
rather than generates a separate copy.

Examples
dvrR 'FOO'
V R«FOO
[1] R«<10
v
A<110

"EXT/ARRAY' [OXT'E' ¢ E«120

OSIze +'A' 'FOO' 'E' 'UND'
28 76 120 0

492

Dyalog APL/W Language Reference

Screen Map: OsSM

[0SM is a system variable that defines a character-based user interface (as opposed to a
graphical user interface). In versions of Dyalog APL that support asynchronous
terminals, [JSM defines a form that is displayed on the USER SCREEN. The
implementation of [JSM in "window" environments is compatible with these versions.
In Dyalog APL/X, [0SM occupies its own separate window on the display, but is
otherwise equivalent. In versions of Dyalog APL with GUI support, JSM either
occupies its own separate window (as in Dyalog APL/X) or, if it exists, uses the
window assigned to the SM object. This allows [JSM to be used in a GUI application in
conjunction with other GUI components.

In general [JSM is a nested matrix containing between 3 and 13 columns. Each row of
[0SM represents a field; each column a field attribute.

The columns have the following meanings :

Column | Description Default
1 Field Contents N/A
2 Field Position - Top Row N/A
3 Field Position - Left Column N/A
4 Window Size - Rows 0
5 Window Size - Columns 0
6 Field Type 0
7 Behaviour 0
8 Video Attributes 0
9 Active Video Attributes -1
10 Home Element - Row 1
11 Home Element - Column 1
12 Scrolling Group - Vertical 0
13 Scrolling Group - Horizontal 0

With the exception of columns 1 and 8, all elements in [JSM are integer scalar values.

Chapter 6 System Functions & Variables 493

Elements in column 1 (Field Contents) may be :

a) A numeric scalar

b) A numeric vector

c) A 1-column numeric matrix

d) A character scalar

e) A character vector

f) A character matrix (rank 2)

g) A nested matrix defining a sub-form whose structure and contents must

conform to that defined for (JSM as a whole. This definition is recursive. Note
however that a sub-form must be a matrix - a vector is not allowed.

Elements in column 8 (Video Attributes) may be :
a) An integer scalar that specifies the appearance of the entire field.

b) An integer array of the same shape as the field contents. Each element
specifies the appearance of the corresponding element in the field contents.

Screen Management (DOS & Async Terminals)

Dyalog APL for UNIX systems (Async terminals) manages two screens; the SESSION
screen and the USER screen. If the SESSION screen is current, an assignment to [JSM
causes the display to switch to the USER screen and show the form defined by [JSM.

If the USER screen is current, any change in the value of JSM is immediately reflected
by a corresponding change in the appearance of the display. However, an assignment
to JSM that leaves its value unchanged has no effect.

494

Dyalog APL/W Language Reference

Dyalog APL automatically switches to the SESSION screen for default output, if it
enters immediate input mode (6-space prompt), or through use of [J or [J. This means
that typing

0OSM « expression

in the APL session will cause the screen to switch first to the USER screen, display the
form defined by JSM, and then switch back to the SESSION screen to issue the 6-space
prompt. This normally happens so quickly that all the user sees is a flash on the screen.
To retain the USER screen in view it is necessary to issue a call to JSR or for APL to
continue processing

e.g.

0OSM « expression ¢ [ISR 1
or
0OSM « expression o [DL 5

Screen Management (Window Versions)

In Dyalog APL/X, and optionally in Dyalog APL/W, [JSM is displayed in a separate
USER WINDOW on the screen. In an end-user application this may be the only
Dyalog APL window. However, during development, there will be a SESSION
window, and perhaps EDIT and TRACE windows too.

The USER Window will only accept input during execution of [JSR. It is otherwise
"output-only". Furthermore, during the execution of [JSR it is the only active window,
and the SESSION, EDIT and TRACE Windows will not respond to user input.

Screen Management (GUI Versions)

In versions of Dyalog APL that provide GUI support, there is a special SM object that
defines the position and size of the window to be associated with JSM. This allows
character-mode applications developed for previous versions of Dyalog APL to be
migrated to and integrated with GUI environments without the need for a total re-write.

Chapter 6 System Functions & Variables 495

Effect of Localisation

Like all system variables (with the exception of JTRAP) [JSM is subject to "pass-
through localisation". This means that a localised [JSM assumes its value from the
calling environment. The localisation of JSM does not, of itself therefore, affect the
appearance of the display. However, reassignment of a localised [JSM causes the new
form to overlay rather than replace whatever forms are defined further down the stack.
The localisation of JSM thus provides a simple method of defining pop-up forms, help
messages, etc.

The user may edit the form defined by [JSM using the system function JSR. Under the
control of [JSR the user may change the following elements in JSM which may
afterwards be referenced to obtain the new values.

Column 1 : Field Contents
Column 10 : Home Element - Row (by scrolling vertically)
Column 11 : Home Element - Column (by scrolling horizontally)

Screen Read: R«{X}OSR Y

[0SR is a system function that allows the user to edit or otherwise interact with the form
defined by [SM.

In versions of Dyalog APL that support asynchronous terminals, if the current screen is
the SESSION screen, [JSR immediately switches to the USER SCREEN and displays
the form defined by JSM.

In Dyalog APL/X, [OSR causes the input cursor to be positioned in the USER window.
During execution of [JSR, only the USER Window defined by [ISM will accept input
and respond to the keyboard or mouse. The SESSION and any EDIT and TRACE
Windows that may appear on the display are dormant.

In versions of Dyalog APL with GUI support, a single SM object may be defined. This
object defines the size and position of the JSM window, and allows [JSM to be used in
conjunctions with other GUI components. In these versions, [JSR acts as a superset of
0DQ (see ODQ) but additionally controls the character-based user interface defined by
OsM.

496

Dyalog APL/W Language Reference

Y is an integer vector that specifies the fields which the user may visit. In versions
with GUI support, Y may additionally contain the names of GUI objects with which the
user may also interact.

If specified, X may be an enclosed vector of character vectors defining EXIT_KEYS or
a 2-element nested vector defining EXIT_KEYS and the INITIAL_CONTEXT.

The result R is the EXIT_CONTEXT.

Thus the 3 uses of [JSR are :
EXIT_CONTEXT « [0SR FIELDS
EXIT_CONTEXT <« (<EXIT_KEYS)OSR FIELDS
EXIT_CONTEXT « (EXIT_KEYS)(INITIAL_CONTEXT)OSR FIELDS

FIELDS

If an element of Y is an integer scalar, it specifies a field as the index of a row in [JSM
(if OSM is a vector it is regarded as having 1 row).

If an element of Y is an integer vector, it specifies a sub-field. The first element in Y
specifies the top-level field as above. The next element is used to index a row in the
form defined by @2[0SM[Y[11] ;1] and so forth.

If an element of Y is a character scalar or vector, it specifies the name of a top-level
GUI object with which the user may also interact. Such an object must be a "top-level"
object, i.e. the Root object ('. ') ora Form or pop-up Menu. This feature is
implemented ONLY in versions of Dyalog APL with GUI support.

EXIT_KEYS

Each element of EXIT_KEYS is a 2-character code from the Input Translate Table for
the keyboard. If the user presses one of these keys, SR will terminate and return a
result.

IFEXIT_KEYS is not specified, it defaults to :
] ER !] EP] IQT]

which (normally) specifies <Enter>, <Esc> and <Shift+Esc>.

Chapter 6 System Functions & Variables 497

INITIAL_CONTEXT

This is a vector of between 3 and 6 elements with the following meanings and defaults:

Element | Description Default
1 Initial Field N/A
2 Initial Cursor Position - Row N/A
3 Initial Cursor Position - Col N/A
4 Initial Keystroke Y
5 (ignored) N/A
6 Changed Field Flags 0

Structure of INITIAL_CONTEXT

INITIAL_CONTEXT[1] specifies the field in which the cursor is to be placed. It is
an integer scalar or vector, and must be a member of Y. It must not specify a field
which has APY YOO behaviour (64), as the cursor is not allowed to enter such a field.

INITIAL_CONTEXT[2 3] are integer scalars which specify the initial cursor
position within the field in terms of row and column numbers.

INITIAL_CONTEXT([4] is either empty, or a 2-element character vector specifying
the initial keystroke as a code from the Input Translate Table for the keyboard.

INITIAL_CONTEXT[5] isignored. Itis included so that the EXIT_CONTEXT
result of one call to [JSR can be used as the INITIAL_CONTEXT to a subsequent call.

INITIAL_CONTEXT[6] is a boolean scalar or vector the same length as Y. It
specifies which of the fields in Y has been modified by the user.

498

Dyalog APL/W Language Reference

EXIT_CONTEXT

The result EXIT_CONTEXT is a 6 or 9-element vector whose first 6 elements have the
same structure as the INITIAL_CONTEXT. Elements 7-9 only apply to those
versions of Dyalog APL that provide mouse support.

Element | Description

Pointer Position - Row
Pointer Position - Col

1 Final Field

2 Final Cursor Position - Row
3 Final Cursor Position - Col
4 Terminating Keystroke

5 Event Code

6 Changed Field Flags

7 Pointer Field

8

9

Structure of the Result of JSR

EXIT_CONTEXT[1] contains the field in which the cursor was when [JSR terminated
due to the user pressing an exit key or due to an event occurring. It is an integer scalar
or vector, and a member of Y.

EXIT_CONTEXT[2 3] are integer scalars which specify the row and column
position of the cursor within the field EXIT_CONTEXT[1] when [JSR terminated.

EXIT_CONTEXT[4] is a 2-element character vector specifying the last keystroke
pressed by the user before JSR terminated. Unless [JSR terminated due to an event,
EXIT_CONTEXT[4] will contain one of the exit keys defined by X. The keystroke is
defined in terms of an Input Translate Table code.

EXIT_CONTEXT[5] contains the sum of the event codes that caused [(JSR to
terminate. For example, if the user pressed a mouse button on a AbY Y00 field (event
code 64) and the current field has C)C)Qi Efe G behaviour (event code 2)
EXIT_CONTEXT[5] will have the value 66.

EXIT_CONTEXT[6] is a boolean scalar or vector the same length as Y. It specifies
which of the fields in Y has been modified by the user during this JSR, ORed with
INITIAL_CONTEXT[6]. Thusifthe EXIT_CONTEXT of one call to [JSR is fed
back as the INITIAL_CONTEXT of the next, EXIT_CONTEXT[6] records the fields
changed since the start of the process.

Chapter 6 System Functions & Variables 499

EXIT_CONTEXT (Window Versions)

[0SR returns a 9-element result ONLY if it is terminated by the user pressing a mouse
button. In this case :

EXIT_CONTEXT([7] contains the field over which the mouse pointer was positioned
when the user pressed a button. It is an integer scalar or vector, and a member of Y.

EXIT_CONTEXT[8 9] are integer scalars which specify the row and column
position of the mouse pointer within the field EXIT_CONTEXT[7] when SR
terminated.

Source: R«[JSRC Y

0SRC returns the script that defines the Class Y.

Y must be a reference to a Class.
R is a vector of character vectors containing the script that was used to define Class Y.

JED oMyClass

:Class MyClass
vV Make Name
:Implements Constructor
(ODF Name
v
tEndClass A MyClass

Z<[ISRC MyClass
pZ
01
i+ 15 29 14 5 19
6 1pZ
:Class MyClass
vV Make Name

:Implements Constructor
(DF Name

v
:EndClass A MyClass

500 Dyalog APL/W Language Reference

State Indicator Stack: R«[STACK

R is a two-column matrix, with one row per entry in the State Indicator.

Column 1 : [OR form of user defined functions or operators on the State
Indicator. Null for entries that are not user defined functions or
operators.

Column 2 : Indication of the type of the item on the stack.
space user defined function or operator

[} execute level

0 evaluated input

* desk calculator level
0bQ in callback function
other primitive operator

Example

)SI

PLUS[2]x

MATDIV[4]

FOO[1]x

¢

OSTACK
*
VPLUS
VMATDIV
*
VFOO
¢
*
pOSTACK
8 2

(pOLC)=p[STACK

Chapter 6 System Functions & Variables 501

Pendent defined functions and operators may be edited in Dyalog APL with no
resulting SI damage. However, only the visible definition is changed; the pendent
version on the stack is retained until its execution is complete. When the function or
operator is displayed, only the visible version is seen. Hence [JSTACK is a tool which
allows the user to display the form of the actual function or operator being executed.

Example

To display the version of MATDIV currently pendent on the stack:

S[OSTACK[4;11]
V R<A MATDIV B
[1] A Divide matrix A by matrix B
[2] C<AHB
[3] A Check accuracy
[4] D«[0.5+A PLUS.TIMES B
v

State of Object: R<JSTATE Y

Y must be a simple character scalar or vector which is taken to be the name of an APL
object. The result returned is a nested vector of 4 elements as described below.
OSTATE supplies information about shadowed or localised objects that is otherwise
unobtainable.

15R Boolean vector, element set to 1 if and only if this level shadows Y.
Note: (p1>R)=p[LC

25R Numeric vector giving the stack state of this name as it entered this
level:
Note: (p22R)=p[LC

not on stack

suspended

pendent (may also be suspended)

active (may also be pendent or suspended)

W — O

32R Numeric vector giving the name classification of Y as it entered this
level.
Note: (p32R)=+/1>R

4LoR Vector giving the contents of Y before it was shadowed at this level.
Note: (p4>R)=+/0#3>R

502 Dyalog APL/W Language Reference

Example
OFMTo[JOR™'FN1"' 'FN2' 'FN3'
V FN1;A;B;C V FN2;A;C vV FN3;A
[1] A<1 [1] A<'HELLO' [1] A<100
[2] B«2 [2] B<'EVERYONE' [2] °
[3] C<«3 [3] C«'HOW ARE YOU?' v
[4] FN2 [4] FN3
v v
)SI
FN3[2]*
FN2[4]
FN1[4]
OSTATE 'A'

111 000 220 HELLO 1
R<(STATE '0TRAP'

Set Stop:

{R}<«X [STOP Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements. X identifies the numbers of lines
in the function or operator named by Y on which a stop control is to be placed.
Numbers outside the range of line numbers in the function or operator (other than 0)
are ignored. The number O indicates that a stop control is to be placed immediately
prior to exit from the function or operator. If X is empty, all existing stop controls are
cancelled. The value of X is independent of JI0.

R is a vector of the line numbers on which a stop control has been placed in ascending
order. The result is suppressed unless it is explicitly used or assigned.

Examples

+(0,110) [OSTOP 'FOO'
01

Existing stop controls in the function or operator named by Y are cancelled before new
stop controls are set:

+1 [JSTOP 'FOO'

Chapter 6 System Functions & Variables 503

All stop controls may be cancelled by giving X an empty vector:

p'' OSTOP 'FOO'

p& [OSTOP 'FOO'
0

Attempts to set stop controls in a locked function or operator are ignored.

OLOCK 'FOO"
+0 1 [STOP'FOO"

The effect of JSTOP when a function or operator is invoked is to suspend execution at
the beginning of any line in the function or operator on which a stop control is placed
immediately before that line is executed, and immediately before exiting from the
function or operator if a stop control of 0 is set. Execution may be resumed by a
branch expression. A stop control interrupt (1001) may also be trapped - see the
OTRAP system variable.

Example
OFX'R«FO0"' 'R«10'

0 1 (STOP'FOO'

FOO
FOO[1]

R
VALUE ERROR

R

A

-1
FOO[0]

R
10

~{LC

10

504 Dyalog APL/W Language Reference

Query Stop: R<«(JSTOP Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer vector of the line
numbers of the function or operator named by Y on which stop controls are set, shown
in ascending order. The value 0 in R indicates that a stop control is set immediately
prior to exit from the function or operator.

Example
(sToP'FOO'

Set Access Control: R«X [SvVC Y

This system function sets access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be
separated from the name by at least one space.

X may be a 4-element boolean vector which specifies the access control to be applied to
all of the shared variables named in Y. Alternatively, X may be a 4-column boolean
matrix whose rows specify the access control for the corresponding name in Y. X may
also be a scalar or a 1-element vector. If so, it treated as if it were a 4-element vector
with the same value in each element.

Each shared variable has a current access control vector which is a 4-element boolean
vector. A 1 in each of the four positions has the following impact :

[1] You cannot set a new value for the shared variable until after an intervening
use or set by your partner.

[2] Your partner cannot set a new value for the shared variable until after an
intervening use or set by you.

[3] You cannot use the value of the shared variable until after an intervening set
by your partner.

(4] Your partner cannot use the value of the shared variable until after an
intervening set by you.

Chapter 6 System Functions & Variables 505

The effect of SVC is to reset the access control vectors for each of the shared
variables named in Y by OR-ing the values most recently specified by your partner
with the values in X. This means that you cannot reset elements of the control vector
which your partner has set to 1.

Note that the initial value of your partner's access control vector is normally 0 0 0 0.
However, if it is a non-APL client application that has established a hot DDE link, its
access control vector is defined to be 1 0 0 1. This inhibits either partner from setting
the value of the shared variable twice, without an intervening use (or set) by the other.
This prevents loss of data which is deemed to be desirable from the nature of the link.
(An application that requests a hot link is assumed to require every value of the shared
variable, and not to miss any). Note that APL's way of inhibiting another application
from setting the value twice (without an intervening use) is to delay the
acknowledgement of the DDE message containing the second value until the variable
has been used by the APL workspace. An application that waits for an
acknowledgement will therefore hang until this happens. An application that does not
wait will carry on obliviously.

The result R is a boolean vector or matrix, corresponding to the structure of X, which
contains the new access control settings. If Y refers to a name which is not a shared
variable, or if the surrogate name is mis-spelt, the corresponding value in R is 4p0.

Examples
1 00 1 0svc 'Xx'
1001
1 OSVC 'X EXTNAME'
1111
(2 4p1 001 01 1 0) [0SVC +'ONE' 'TWO'
1111
0110

506

Dyalog APL/W Language Reference

Query Access Control: R<[JSVC Y

This system function queries the access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be
separated from the name by at least one space.

If Y specifies a single name, the result R is a boolean vector containing the current
effective access control vector. If Y is a matrix of names, R is a boolean matrix whose
rows contain the current effective access control vectors for the corresponding row in
Y.

For further information, see the preceding section on setting the access control vector.

Example

gsvc 'Xx'
0000

Shared Variable Offer: R«X [OSvVO Y

This system function offers to share one or more variables with another APL
workspace or with another application. Shared variables are implemented using
Dynamic Data Exchange (DDE) and may be used to communicate with any other
application that supports this protocol. See Interface Guide for further details.

Y is a character scalar, vector or matrix. Ifitis a vector it contains a name and
optionally an external name or surrogate. The first name is the name used internally in
the current workspace. The external name is the name used to make the connection
with the partner and, if specified, must be separated from the internal name by one or
more blanks. Ifthe partner is another application, the external name corresponds to the
DDE item specified by that application. If the external name is omitted, the internal
name is used instead. The internal name must be a valid APL name and be either
undefined or be the name of a variable. There are no such restrictions on the content of
the external name.

Instead of an external name, Y may contain the special symbol ' ¢ "' separated from the
(internal) name by a blank. This is used to implement a mechanism for sending
DDE EXECUTE messages, and is described at the end of this section.

If Y is a scalar, it specifies a single 1-character name. IfY is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

Chapter 6 System Functions & Variables 507

The left argument X is a character vector or matrix. If it is a vector, it contains a string
that defines the protocol, the application to which the shared variable is to be
connected, and the topic of the conversation. These three components are separated by
the characters ' : ' and ' | ' respectively. The protocol is currently always 'DDE ', but
future implementations of Dyalog APL may support additional communications
protocols if applicable. If Y specifies more than one name, X may be a vector or a
matrix with one row per row in Y.

If the shared variable offer is a general one (server), X, or the corresponding row of X,
should contain 'DDE: '.

The result R is a numeric scalar or vector with one element for each name in Y and
indicates the "degree of coupling”. A value of 2 indicates that the variable is fully
coupled (via a warm or hot DDE link) with a shared variable in another APL
workspace, or with a DDE item in another application. A value of 1 indicates that
there is no connection, or that the second application rejected a warm link. In this case,
a transfer of data may have taken place (via a cold link) but the connection is no longer
open. Effectively, APL treats an application that insists on a cold link as if it
immediately retracts the sharing after setting or using the value, whichever is
appropriate.

Examples

'DDE: "' [OSvo 'Xx'
1

'DDE: "' [OSVO 'X SALES_92'
1

‘DDE: "' [OSVO t'X SALES_92' 'COSTS_92'
11

'DDE:DYALOG|SERV_WS' [OSvO 'X'
2

'DDE:EXCEL|SHEET1' [OSVO 'DATA R1C1:R10C12'
2

A special syntax is used to provide a mechanism for sending DDE_ EXECUTE messages
to another application. This case is identified by specifying the ' ¢ ' symbol in place of
the external name. The subsequent assignment of a character vector to a variable
shared with the external name of ' ¢ ' causes the value of the variable to be transmitted
in the form of a DDE_EXECUTE message. The value of the variable is then reset to 1
or 0 corresponding to a positive or negative acknowledgement from the partner. In
most (if not all) applications, commands transmitted in DDE_ EXECUTE messages must
be enclosed in square brackets []. For details, see the relevant documentation for the
external application.

508 Dyalog APL/W Language Reference

Examples :
'DDE:EXCEL|SYSTEM' [OSVO 'X @'
2
X<'[OPEN("c:\mydir\mysheet.x1s")]"'
X
1
X<'[SELECT("R1C1:R5C10")]"
X
1

Query Degree of Coupling: R<[JSVO Y

This system function returns the current degree of coupling for one or more shared
variables.

Y is a character scalar, vector or matrix. Ifitis a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks.

If Y is a scalar, it specifies a single 1-character name. IfY is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

If Y specifies a single name, the result R is a 1-element vector whose value 0, 1 or 2
indicates its current degree of coupling. If Y specifies more than one name, R is a
vector whose elements indicate the current degree of coupling of the variable specified
by the corresponding row in Y. A value of 2 indicates that the variable is fully coupled
(via a warm or hot DDE link) with a shared variable in another APL workspace, or
with a DDE item in another application. A value of 1 indicates that you have offered
the variable but there is no such connection, or that the second application rejected a
warm link. In this case, a transfer of data may have taken place (via a cold link) but the
connection is no longer open. A value of 0 indicates that the name is not a shared
variable.

Examples
gsvo 'x'

Osvo t'X SALES' 'Y' 'JUNK'
210

Chapter 6 System Functions & Variables 509

Shared Variable Query: R<[JSVQ Y

This system function is implemented for compatibility with other versions of APL but
currently performs no useful function. Its purpose is to obtain a list of outstanding
shared variable offers made to you, to which you have not yet responded.

Using DDE as the communication protocol, it is not possible to implement [JSVQ
effectively.

Shared Variable Retract Offer: R«JSVR Y

This system function terminates communication via one or more shared variables, or
aborts shared variable offers that have not yet been accepted.

Y is a character scalar, vector or matrix. Ifitis a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If'Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

If Y specifies a single name, the result R is a 4-element vector indicating the state of the
variable prior to retraction. If Y specifies more than one name, R is a matrix whose

rows indicate the previous state of the variable specified by the corresponding row in Y.

See [JSVS for further information on the possible states of a shared variable.

Shared Variable State: R«[SVS Y

This system function returns the current state of one or more shared variables.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If'Y is a scalar, it specifies a single 1-character name. If'Y is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

If' Y specifies a single name, the result R is a 4-element vector indicating its current
state. If Y specifies more than one name, R is a matrix whose rows indicate the current
state of the variable specified by the corresponding row in Y.

510 Dyalog APL/W Language Reference

There are four possible shared variable states :

0 0 1 1: means that you and your partner are both aware of the current value, and
neither has since reset it. This is also the initial value of the state when
the link is first established.

1 0 1 0: means that you have reset the shared variable and your partner has not
yet used it. This state can only occur if both partners are APL
workspaces.

0 1 0 1: means that your partner has reset the shared variable but that you have
not yet used it.

0O 0 0 O: thename is not that of a shared variable.

Examples

gsvs 'Xx'
0101

svs +'X SALES' 'Y' 'JUNK'

OO
eNoNe]
O =
OO~

Terminal Control: (OML) R«OTC

0TC is a deprecated feature and is replaced by [JUCS (see note).

OTC is a simple three element vector. If[JML < 3 this is ordered as follows:
OTCc[1] - Backspace
OTC[2] - Linefeed
OTC[3] - Newline

Note that JTC=0JAV[OIO+13] forOML< 3.

IfOML 2 3 the order of the elements of JTC is instead compatible with IBM's
APL2:

OTC[1] - Backspace
OTC[2] - Newline
OTC[3] - Linefeed

Chapter 6 System Functions & Variables 511

Elements of JTC beyond 3 are not defined but are reserved.

Note

With the introduction of JUCS in Version 12.0, the use of TC is discouraged and it is
strongly recommended that you generate control characters using JUCS instead. This
recommendation holds true even if you continue to use the Classic Edition.

Control Character Old New

Backspace gTcl1] gucs 8

Linefeed grclf2] (OML<3) gucs 10
grc(3] (OML=23)

Newline grcl3] (0OML<3) gucs 13
grcl2] (OML=23)

Thread Child Numbers: R«[JTCNUMS Y

Y must be a simple array of integers representing thread numbers.
The result R is a simple integer vector of the child threads of each thread of Y.

Examples

OTCNUMS 0
2 3

OTCNUMS 2 3
L 56 7 89

Get Tokens: {R}<«{X} OTGET Y

Y must be a simple integer scalar or vector that specifies one or more tokens, each with
a specific non-zero token type, that are to be retrieved from the pool.

X is an optional time-out value in seconds.

Shy result R is a sacalr or vector containing the values of the tokens of type Y that have
been retrieved from the token pool.

Note that types of the tokens in the pool may be positive or negative, and the elements
of Y may also be positive or negative.

512 Dyalog APL/W Language Reference

A request (OTGET) for a positive token will be satisifed by the presence of a token in
the pool with the same positive or negative type. If the pool token has a positive type, it
will be removed from the pool. If the pool token has a negative type, it will remain in
the pool. Negatively typed tokens will therefore satisfy an infinite number of requests
for their positive equivalents. Note that a request for a positive token will remove one if
it is present, before resorting to its negative equivalent

A request for a negative token type will only be satisifed by the presence of a negative
token type in the pool, and that token will be removed.

If, when a thread calls TGET, the token pool satisfies all of the tokens specified by Y,
the function returns immediately with a (shy) result that contains the values associated
with the pool tokens. Otherwise, the function will block (wait) until all of the
requested tokens are present or until a timeout (as specified by X) occurs.

For example, if the pool contains only tokens of type 2:
OTGET 2 & A blocks waiting for a 4-token

The TGET operation is atomic in the sense that no tokens are taken from the pool
until all of the requested types are present. While this last example is waiting for a 4-
token, other threads could take any of the remaining 2-tokens.

Note also, that repeated items in the right argument are distinct. The following will
block until there are at least 3 x 2-tokens in the pool:

OTGET 3/2 A wait for 3 x 2-tokens

The pool is administered on a first-in-first-out basis. This is significant only if tokens
of the same type are given distinct values. For example:

OTGET OTPOOL A empty pool.
"ABCDE'JTPUT™2 2 3 2 3 A pool some tokens.

+[JTGET 2 3
AC

+0TGET 2 3
BE

Timeout is signalled by the return of an empty numeric vector € (zilde). By default, the
value of a token is the same as its type. This means that, unless unless you have
explicitly set the value of a token to 8, a[JTGET result of & unambiguously identifies
a timeout.

Chapter 6 System Functions & Variables 513

Beware - the following statement will wait forever and can only be terminated by an
interrupt.

OTGET 0 A wait forever

Note too that if a thread waiting to OTGET tokens is JTKILLed, the thread disappears
without removing any tokens from the pool. Conversely, if a thread that has removed
tokens from the pools is JTKIL Led, the tokens are not returned to the pool.

This Space: R«OTHIS

OTHIS returns a reference to the current namespace, i.e. to the space in which it is
referenced.

If NC9 is a reference to any object whose name-class is 9, then:

NC9=NC9.[THIS

1
Examples
OTHIS
#
leDNS [}
X.OTHIS
#.X
'"F'OWC'Form'
'F.B'0OWC'Button'
F.B.OTHIS
#.F.B

Pol1y<«[JNEW Parrot
Pol1y.[OTHIS
#.[Parrot]

An Instance may use JTHIS to obtain a reference to its own Class:

Polly. (=>[JCLASS OTHIS)
#.Parrot

or a function (such as a Constructor or Destructor) may identify or enumerate all other
Instances of the same Class:

Polly.(pOINSTANCES>>[JCLASS [THIS)

514 Dyalog APL/W Language Reference

Current Thread Identity: R<OTID

R is a simple integer scalar whose value is the number of the current thread.

Examples
OdTID A Base thread number

¢&'TID' A Thread number of async ¢.

Kill Thread: {R}<«{X}OTKILL Y

Y must be a simple array of integers representing thread numbers to be terminated. X is
a boolean single, defaulting to 1, which indicates that all descendant threads should
also be terminated.

The shy result R is a vector of the numbers of all threads that have been terminated.

The base thread 0 is always excluded from the cull.

Examples
OTKILL O A Kill background threads.
OTKILL OTID A Kill self and descendants.
0 OTKILL OTID A Kill self only.

OTKILL OTCNUMS OTID A Kill descendants.

Chapter 6 System Functions & Variables 515

Current Thread Name: OTNAME

The system variable JTNAME reports and sets the name of the current APL thread. This
name is used to identify the thread in the Tracer.

The default value of JTNAME is an empty character vector.

You may set JTNAME to any valid character vector, but it is recommended that control
characters (such as JAV[[JIO]) be avoided.

Example:
OTNAME<«'Dylan'

OTNAME
Dylan

Thread Numbers: R«JTNUMS

OTNUMS reports the numbers of all current threads.

R is a simple integer vector of the base thread and all its living descendants.

Example

OTNUMS
024563789

516 Dyalog APL/W Language Reference

Token Pool: R«JTPOOL

R is a simple scalar or vector containing the token types for each of the tokens that are
currently in the token pool.

The following (OML =0) function returns a 2-column snapshot of the contents of the
pool. It does this by removing and replacing all of the tokens, restoring the state of the
pool exactly as before. Coding it as a single expression guarantees that snap is atomic
and cannot disturb running threads.

snap<{(OTGET w){(®tw a){a}a OTPUT w}w}

snap OTPOOL
hello world
2
2
three-type token
2

NNWN B+~

Put Tokens: {R}«{X} OTPUT Y

Y must be a simple integer scalar or vector of non-zero token types.
X is an optional array of values to be stored in each of the tokens specified by Y.

Shy result R is a vector of thread numbers (if any) unblocked by the JTPUT.

Examples
OTPUT 2 3 2 A put a 2-token, a 3-token and another
2-token into the pool.
88 [TPUT 2 A put another 2-token into the pool

this token has the value 88.

'Hel1o'0TPUT "4 ma put a “4-token into the pool with
the value 'Hello'.

If X is omitted, the value associated with each of the tokens added to the pool is the
same as its type.

Note that you cannot put a 0-token into the pool; 0-s are removed from Y.

Chapter 6 System Functions & Variables 517

Set Trace:

{R}«X OTRACE Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
trace control is to be placed. Numbers outside the range of line numbers in the
function or operator (other than 0) are ignored. The number 0 indicates that a trace
control is to be placed immediately prior to exit from the function or operator. The
value of X is independent of JI0.

Example

+(0,110) OTRACE'FOO'
01

Existing trace controls in the function or operator named by Y are cancelled before new
trace controls are set:

+ 1 [JTRACE'FOO'
1

All trace controls may be cancelled by giving X an empty vector:

p8 OTRACE 'FOO'
0

Attempts to set trace controls in a locked function or operator are ignored.

0OLOCK 'FOO'
+1 [JTRACE 'FOO'

The effect of trace controls when a function or operator is invoked is to display the
result of each complete expression for lines with trace controls as they are executed,
and the result of the function if trace control 0 is set. Ifa line contains expressions
separated by ¢, the result of each complete expression is displayed for that line after
execution.

The result of a complete expression is displayed even where the result would normally
be suppressed. In particular:

1. the result of a branch statement is displayed;
2. the result (pass-through value) of assignment is displayed;
3. the result of a function whose result would normally be suppressed is displayed;

518 Dyalog APL/W Language Reference

For each traced line, the output from [JTRACE is displayed as a two element vector, the
first element of which contains the function or operator name and line number, and the
second element of which takes one of two forms.

1. The result of the line, displayed as in standard output.
2. - followed by a line number.

Example

OvrR 'DSL'

V R<«DSL SKIP:;A:B;C:;D
[1] A<2x3+4
[2] B«(2 3p'ABCDEF')A
[3] >NEXTx1SKIP
[4] 'SKIPPED LINE'
[5] NEXT:C«'one' ¢ D<«'two'
[6] END:R<«C D

v

(0,16) OTRACE 'DSL'

DSL 1
DSL[1] 14
DSL[2] ABC 14
DEF
DSL[3] -5
DSL[5] one
DSL[5] two

DSL[6] one two
DSL[O0] one two
one two

Query Trace: R«[JTRACE Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer vector of the line
numbers of the function or operator named by Y on which trace controls are set, shown
in ascending order. The value 0 in R indicates that a trace control is set to display the
result of the function or operator immediately prior to exit.

Example

OTRACE'DSL"'
0123456

Chapter 6 System Functions & Variables 519

Trap Event: OTRAP

This is a non-simple vector. An item of JTRAP specifies an action to be taken when
one of a set of events occurs. An item of JTRAP is a 2 or 3 element vector whose
items are simple scalars or vectors in the following order:

1. an integer vector whose value is one or more event codes selected from the list in
the Figure on the following two pages.

2. acharacter scalar whose value is an action code selected from the letters C, E, N or
S.

3. if element 2 is the letter C or E, this item is a character vector forming a valid APL
expression or series of expressions separated by ¢. Otherwise, this element is
omitted.

An EVENT may be an APL execution error, an interrupt by the user or the system, a
control interrupt caused by the JSTOP system function, or an event generated by the
OSIGNAL system function.

When an event occurs, the system searches for a trap definition for that event. The
most local JTRAP value is searched first, followed by successive shadowed values of
OTRAP, and finally the global -TRAP value. Separate actions defined in a single
OTRAP value are searched from left to right. If a trap definition for the event is found,
the defined action is taken. Otherwise, the normal system action is followed.

The ACTION code identifies the nature of the action to be taken when an associated
event occurs. Permitted codes are interpreted as follows:

C Cutback The state indicator is 'cut back' to the environment in which the
OTRAP is locally defined (or to immediate execution level). The
APL expression in element 3 of the same JTRAP item is then
executed.

E Execute The APL expression in element 3 of the same JTRAP item is
executed in the environment in which the event occurred.

N Next The event is excluded from the current JTRAP definition. The search
will continue through further localised definitions of JTRAP.

S Stop Stops the search and causes the normal APL action to be taken in the
environment in which the event occurred.

520 Dyalog APL/W Language Reference

Code

Event

NN Nk W~ O

Any event in range 1-999

WS FULL

SYNTAX ERROR

INDEX ERROR

RANK ERROR

LENGTH ERROR

VALUE ERROR

FORMAT ERROR

LIMIT ERROR

DOMAIN ERROR

HOLD ERROR

NONCE ERROR

FILE TIE ERROR

FILE ACCESS ERROR

FILE INDEX ERROR

FILE FULL

FILE NAME ERROR

FILE DAMAGED

FILE TIED

FILE TIED REMOTELY

FILE SYSTEM ERROR

FILE SYSTEM NOT AVAILABLE
FILE SYSTEM TIES USED UP
FILE TIE QUOTA USED UP
FILE NAME QUOTA USED UP
FILE SYSTEM NO SPACE

FILE ACCESS ERROR - CONVERTING FILE
FILE COMPONENT DAMAGED

Figure 6(i): OTRAP Event Codes

See Chapter 8 for further details.

Chapter 6 System Functions & Variables

521

Code Event
52 FIELD CONTENTS RANK ERROR
53 FIELD CONTENTS TOO MANY COLUMNS
54 FIELD POSITION ERROR
55 FIELD SIZE ERROR
56 FIELD CONTENTS/TYPE MISMATCH
57 FIELD TYPE/BEHAVIOUR UNRECOGNISED
58 FIELD ATTRIBUTES RANK ERROR
59 FIELD ATTRIBUTES LENGTH ERROR
60 FULL-SCREEN ERROR
61 KEY CODE UNRECOGNISED
62 KEY CODE RANK ERROR
63 KEY CODE TYPE ERROR
70 FORMAT FILE ACCESS ERROR
71 FORMAT FILE ERROR
72 NO PIPES
76 PROCESSOR TABLE FULL
84 TRAP ERROR
90 EXCEPTION
92 TRANSLATION ERROR
200-499 Reserved for distributed auxiliary processors
500-999 | User-defined events
1000 Any event in range 1001-1006
1001 Stop vector
1002 Weak interrupt
1003 INTERRUPT
1005 EOF INTERRUPT
1006 TIMEOUT
1007 RESIZE (Dyalog APL/X, Dyalog APL/W)
1008 DEADLOCK

Figure 6(i): OTRAP Event Codes (Continued)

See : Trap as an alternative 'control structured' error trapping mechanism.

522

Dyalog APL/W Language Reference

Examples
OTRAP«c(3 4 5) 'E' 'ERROR' ¢ p[JTRAP

OTRAP
3 4 5 E ERROR

Items may be specified as scalars. If there is only a single trap definition, it need not be
enclosed. However, the value of JTRAP will be rigorously correct:

OTRAP«11 'E' '-LAB'

OTRAP
11 E -ERR
pOTRAP
1
The value of JTRAP in a clear workspace is an empty vector whose prototype is
0p(® "' '"'). A convenient way of cancelling a JTRAP definition is:
OTRAP<0pOTRAP

Event codes 0 and 1000 allow all events in the respective ranges 1-999 and 1000-1006
to be trapped. Specific event codes may be excluded by the N action (which must
precede the general event action):

OTRAP«(1 'N')(0 'E' '-GENERR")

The 'stop' action is a useful mechanism for cancelling trap definitions during
development of applications.

The 'cut-back' action is useful for returning control to a known point in the application
system when errors occur. The following example shows a function that selects and
executes an option with a general trap to return control to the function when an
untrapped event occurs:

Chapter 6 System Functions & Variables 523

V SELECT;OPT;[TRAP
[1] A Option selection and execution
[2] A A general cut-back trap
[3] OTRAP«(0 1000)'C' '-ERR'
(4] INP:[[«'OPTION : ' ¢ OPT<«(OPT#' ')/OPT<«9i[]
[5] *EXp:(COPT)EOptions o "INVALID OPTION' ¢ -INP
[6] EX:eOPT ¢ ->INP
[7] ERR:ERRORAACTION ¢ -INP
[8] END:
\'

User-defined events may be signalled through the JSIGNAL system function. A user-
defined event (in the range 500-999) may be trapped explicitly, or implicitly by the
event code 0.

Example
OTRAP«<500 'E' '''USER EVENT 500 - TRAPPED'''

OSIGNAL 500
USER EVENT 500 - TRAPPED

524 Dyalog APL/W Language Reference

Token Requests: R<(TREQ Y

Y is a simple scalar or vector of thread numbers.

R is a vector containing the concatenated token requests for all the threads specified in
Y. This is effectively the result of catenating all of the right arguments together for all
threads in Y that are currently executing JTGET.

Example

OTREQ OTNUMS A tokens required by all threads.

Time Stamp: R<[TS

This is a seven element vector which identifies the clock time set on the particular
installation as follows:

OTS[1] - Year
O7S[2] - Month
OTs[3] - Day
OTs[4] - Hour

OTS[5] - Minute

OTts[6] - Second

OTS[7] - Millisecond
Example

gTs

1989 7 11 10 42 59 123

Note that on some systems, where time is maintained only to the nearest second, a zero
is returned for the seventh (millisecond) field.

Chapter 6 System Functions & Variables 525

Wait for Threads to Terminate: R<TSYNC Y

Y must be a simple array of thread numbers.
If' Y is a simple scalar, R is an array, the result (if any) of the thread.

If'Y is a simple non-scalar, R has the same shape as Y, and result is an array of enclosed
thread results.

The interpreter detects a potential deadlock if a number of threads wait for each other
in a cyclic dependency. In this case, the thread that attempts to cause the deadlock
issues error number 1008: DEADLOCK.

Examples
dup«{w w} A Duplicate
O«dup&88 A Show thread number
11
88 88
OTSYNC dup&88 A Wait for result
88 88
OTSYNC,dup&88
88 88

OTSYNC dup&1 2 3
123 123

OTSYNC dup&™1 2 3
11 22 33

OTsSYNC OTID A Wait for self
DEADLOCK

OTSYNC OTID

A

OEN
1008

526

Dyalog APL/W Language Reference

Unicode Convert: R«{X} QUuCS Y

0UCS converts (Unicode) characters into integers and vice versa.

The optional left argument X is a character vector containing the name of a variable-
length Unicode encoding scheme which must be one of:

¢ 'UTF-8'
o 'UTF-16'
e 'UTF-32°

If not, a DOMAIN ERROR is issued.

If X is omitted, Y is a simple character or integer array, and the result R is a simple
integer or character array with the same rank and shape as Y.

If X is specified, Y must be a simple character or integer vector, and the result R is a
simple integer or character vector.

Monadic [JUCS

Used monadically, QUCS simply converts characters to Unicode code points and vice-
versa.

With a few exceptions, the first 256 Unicode code points correspond to the ANSI
character set.

Jucs 'Hello World'
72 101 108 108 111 32 87 111 114 108 100

gucs 2 11p72 101 108 108 111 32 87 111 114 108 100
Hello World
Hello World

The code points for the Greek alphabet are situated in the 900's:

Qucs 'kahnuépa £AN&da’
954 945 955 951 956 941 961 945 32 949 955 955 94O 948 945

Thanks to work done by the APL Standards committee in the previous millennium,
Unicode also contains the APL character set. For example:

fJucs 123 40 43 47 9077 41 247 9076 9077 125
{(+/w)+pw}

Chapter 6 System Functions & Variables 527

Dyadic JUCS

Dyadic JUCS is used to translate between Unicode characters and one of three standard
variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32. These
represent a Unicode character string as a vector of 1-byte (UTF-8), 2-byte (UTF-16)
and 4-byte (UTF-32) signed integer values respectively.

'UTF-8"' [UuCS 'ABC'
65 66 67
'"UTF-8' [UCS 'ABCAQA'
65 66 67 195 134 195 152 195 133
; 'UTF-8' QUuCS 195 134, 195 152, 195 133
kD

"UTF-8' [UCS 'vyeia oou'

206 179 206 181 206 185 206 177 32 207 131 206 191 207 133
"UTF-16' [JUCS 'yeia oou'

o947 949 953 945 32 963 959 965
"UTF-32' [JUuCS 'yeia oou'

947 949 953 945 32 963 959 965

Because integers are signed, numbers greater than 127 will be represented as 2-byte
integers (type 163), and are thus not suitable for writing directly to a native file. To
write the above data to file, the easiest solution is to use [JUCS to convert the data to 1-
byte characters and append this data to the file:

(OucS 'UTF-8' [UCS 'ABCA®A') [INAPPEND tn

Note regarding UTF-16: For most characters in the first plane of Unicode (0000-
FFFF), UTF-16 and UCS-2 are identical. However, UTF-16 has the potential to encode
all Unicode characters, by using more than 2 bytes for characters outside plane 1.

'UTF-16"' [UCS 'ABCE@AVA'
65 66 67 198 216 197 9042 9035

O«unihan<UCS (2x2x16)+13 A x20001-x200032
sz 0

'"UTF-16"' [UCS unihan
55360 56321 55360 56322 55360 56323

Translation Error

QucCs will generate TRANSLATION ERROR (event number 92) if the argument
cannot be converted or, in the Classic Edition, if the result is not in [JAV.

2 See for example http://unicode.org/cgi-bin/GetUnihanData.pl?codepoint=20001

528

Dyalog APL/W Language Reference

Using (Microsoft .Net Search Path): OUSING

OUSING specifies a list of Microsoft .Net Namespaces that are to be searched for a
reference to a .Net class.

OUSING is a vector of character vectors, each element of which specifies the name of a
.Net Namespace followed optionally by a comma (,) and the Assembly in which it is to
be found.

If the Assembly is defined in the global assembly cache, you need only specify its
name. If not, you must specify a full or relative pathname.

If the Microsoft .Net Framework is installed, the System namespace in
mscorlib.dll is automatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name of the Assembly.

OUSING has namespace scope. If the local value of JUSING is anything other than
empty, and you reference a name that would otherwise generate a VALUE ERROR,
APL searches the list of .Net Namespaces and Assemblies specified by JUSING for a
class of that name. If it is found, an entry for the class is added to the symbol table in
the current space and the class is used as specified. Note that subsequent references to
that class in the current space will be identified immediately.

IfJUSING is empty (its default value in a CLEAR WS) no such search is performed.
Note that when you assign a value to JUSING, you may specify a simple character

vector or a vector of character vectors.

Examples:

OJUSING<«'System'
DISPLAY [USING

JUSING,«c'System.Windows.Forms,System.Windows.Forms.d11"'
OQUSING,«c'System.Drawing,System.Drawing.d11"'

An Assembly may contain top-level classes which are not packaged into .Net
Namespaces. In this case, you omit the Namespace name. For example:

(JUSING«,c',.\LoanService.d11'

Chapter 6 System Functions & Variables 529

Verify & Fix Input: R«{X}OVFI Y

Y must be a simple character scalar or vector. X is optional. If present, X must be a
simple character scalar or vector. R is a nested vector of length two whose first item is
a simple logical vector and whose second item is a simple numeric vector of the same
length as the first item of R.

Y is the character representation of a series of numeric constants. If X is omitted,
adjacent numeric strings are separated by one or more blanks. Leading and trailing
blanks and separating blanks in excess of one are redundant and ignored. If X is
present, X specifies one or more alternative separating characters. Blanks in leading
and trailing positions in Y and between numeric strings separated also by the
character(s) in X are redundant and ignored. Leading, trailing and adjacent occurrences
of the character(s) in X are not redundant. The character O is implied in Y before a
leading character, after a trailing character, and between each adjacent pair of
characters specified by X.

The length of the items of R is the same as the number of identifiable strings (or
implied strings) in Y separated by blank or the value of X. An element of the first item
of R is 1 where the corresponding string in Y is a valid numeric representation, or 0
otherwise. An element of the second item of R is the numeric value of the
corresponding string in Y if it is a valid numeric representation, or 0 otherwise.

Examples

OVFI '"12.1 1E1 1A1 ~10°
1101 12.1 10 0 710

>(//0VFI'12.1 1E1 1A1 "10')
12.1 10 710

','0OVFI'3.9,2.4,,76,"
11111 3.92.40760

'o'OVFI'1 o 2 3 o 4 '
101 104
ee=[VFI"'

530

Dyalog APL/W Language Reference

Vector Representation: R«VR Y

Y must be a simple character scalar or vector which represents the name of a function
or defined operator.

If Y is the name of a defined function or defined operator, R is a simple character
vector containing a character representation of the function or operator with each line
except the last terminated by the newline character (OTC[3]). Its display form is as
follows:

1. the header line starts at column 8 with the V symbol in column 6,
2. the line number for each line of the function starts in column 1,

3. the statement contained in each line starts at column 8 except for labelled lines or
lines beginning with A which start at column 7,

4. the header line and statements contain no redundant blanks beyond column 7 except
that the ¢ separator is surrounded by single blanks, control structure indentation is
preserved and comments retain embedded blanks as originally defined,

5. the last line shows only the V character in column 6.

If Y is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty vector.

Example

pV<OVR'PLUS"
128

v
v R<{A}PLUS B
[1] A MONADIC OR DYADIC +
[2] -DYADICp=2=[IJNC'A' ¢ R«B ¢ -END
[3] DYADIC:R«A+B ¢ -END
[4] END:
\'4

The definition of [JVR has been extended to names assigned to functions by
specification (<), and to local names of functions used as operands to defined
operators. In these cases, the result of [JVR is identical to that of [JCR except that the
representation of defined functions and operators is as described above.

Chapter 6 System Functions & Variables 531

Example

AVG<MEANo ,
+F<[JVR'AVG'
vV R«<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
V o,

pF

DISPLAY F

I
||
I I[l] R«(+/X)+pX

<

Workspace Available: R<[OWA

This is a simple integer scalar. It identifies the total available space in the active
workspace area given as the number of bytes it could hold.

A side effect of using [JWA is an internal reorganisation of the workspace and process
memory, as follows:

1. Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-referenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple numeric
array that happens to contain only values 0 or 1, is demoted or squeezed to have a
(DR type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process is
known as compaction.

4. Workspace above a small amount (1/16 of the configured maximum workspace
size) of working memory is returned to the Operating System. On a Windows
system, you can see the process size changing by using Task Manager.

Example

OWA
261412

532 Dyalog APL/W Language Reference

Windows Create Object: {R}<«{X}OWC Y

This system function creates a GUI object. Y is either a vector which specifies
properties that determine the new object's appearance and behaviour, or the [JOR of a
GUI object that exists or previously existed. X is a character vector which specifies the
name of the new object, and its position in the object hierarchy.

If X is omitted, JWC attaches a GUI component to the current namespace, retaining any
functions, variables and other namespaces that it may contain. Monadic (JWC is
discussed in detail at the end of this section.

IfY is a nested vector each element specifies a property. The Type property (which
specifies the class of the object) must be specified. Most other properties take default
values and need not be explicitly stated. Properties (including Type) may be declared
either positionally or with a keyword followed by a value. Note that Ty pe must always
be the first property specified. Properties are specified positionally by placing their
values in Y in the order prescribed for an object of that type.

IfY is a result of [JOR, the new object is a complete copy of the one from which the
0OR was made, including any child objects, namespaces, functions and variables that it
contained at that time.

The shy result R is the full name (starting #. or [JSE.) of the namespace X.

An object's name is specified by giving its full pathname in the object hierarchy. At
the top of the hierarchy is the Root object whose name is ".". Below "." there may
be one or more "top-level" objects. The names of these objects follow the standard

rules for other APL objects as described in Chapter 1.

Names for sub-objects follow the same rules except that the character "." is used as a
delimiter to indicate parent/child relationships.

The following are examples of legal and illegal names :

Legal Illegal

FORM1 FORM 1
form_23 form#1
Forml.Gp1l 1_Form

F1.92.b34 Form+1

Chapter 6 System Functions & Variables 533

If X refers to the name of an APL variable, label, function, or operator, a DOMAIN
ERROR is reported. If X refers to the name of an existing GUI object or namespace, the
existing one is replaced by the new one. The effect is the same as if it were deleted
first.

If Y refers to a non-existent property, or to a property that is not defined for the type of
object X, a DOMAIN ERROR is reported. A DOMAIN ERROR is also reported if a
value is given that is inconsistent with the corresponding property. This can occur for
example, if Y specifies values positionally and in the wrong order.

A "top-level" object created by [JWC whose name is localised in a function/operator
header, is deleted on exit from the function/operator. All objects, including sub-
objects, can be deleted using [JEX.

GUI objects are named relative to the current namespace, so the following examples
are equivalent:

'F1.B1' [OWC 'Button'

is equivalent to

)CS F1

#.F1
'B1' OWC 'Button'
)CS

#

is equivalent to :

'B1' F1.0WC 'Button'

534 Dyalog APL/W Language Reference

Examples
A Create a default Form called F1

'F1' OWC 'Form'

A Create a Form with specified properties (by position)
A Caption = "My Application" (Title)

A Posn = 10 30 (10% down, 30% across)

A Size = 80 60 (80% high, 60% wide)

‘F1' OWC 'Form' 'My Application' (10 30)(80 60)

A Create a Form with specified properties (by keyword)
A Caption = "My Application" (Title)

A Posn = 10 30 (10% down, 30% across)

A Size = 80 60 (80% high, 60% wide)

PROPS<«c'Type' 'Form'
PROPS,«c'Caption' 'My Application'
PROPS,«c'Posn' 10 30
PROPS,«c'Size' 80 60

‘F1' [WC PROPS

A Create a default Button (a pushbutton) in the Form F1
‘F1.BTN' OWC 'Button'

Create a pushbutton labelled "Ok "

10% down and 10% across from the start of the FORM

with callback function FOO associated with EVENT 30
(this event occurs when the user presses the button)

DDO®DO®D

‘F1.BTN'0WC'Button’ '&0k"' (10 10)('Event' 30 'FOO')

Monadic OWC is used to aftach a GUI component to an existing object. The existing
object must be a pure namespace or a GUI object. The operation may be performed by
changing space to the object or by running [JWC inside the object using the dot syntax.
For example, the following statements are equivalent.

)CS F

#.F
OWC 'Form' @ Attach a Form to this namespace
)CS

#

F.OWC'Form' A Attach a Form to namespace F

Chapter 6 System Functions & Variables 535

Windows Get Property: R«{X}OWG Y

This system function returns property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
is a character vector or a vector of character vectors containing the name(s) of the
properties whose values are required. The result R contains the current values of the
specified properties. If Y specifies a single property name, a single property value is
returned. If'Y specifies more than one property, R is a vector with one element per
name in Y.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If Y refers to a
non-existent property, or to a property that is not defined for the type of object X, a
DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of X (referring
to the namespace in which the function is being evaluated) may be omitted. The
following examples are equivalent:

'F1.B1' [OWG 'Caption’

'B1' F1.0OWG 'Caption’

"' F1.B1.0WG 'Caption'

F1.B1.0WG 'Caption’
Examples

'F1' OWC 'Form' 'TEST'
'F1' [OWG 'Caption'’

TEST
'F1' OWG 'MaxButton'
1
'F1' OWG 'Size'
50 50
DISPLAY 'F1' [OWG 'Caption' 'MaxButton' 'Size'

| . o
| ITEST| 1 |50 50| |
|] 1 1]

—_———— ————— |

536 Dyalog APL/W Language Reference

Windows Child Names: R«{X}OWN Y

This system function reports the names of the objects whose parent is Y. This is a
character scalar or vector containing the name of an existing GUI object.

The optional left argument X is a character vector which specifies the Type of object
to be reported.

The result R is a vector of character vectors containing the names of the direct children
of Y which are of Type X, or all of them if X is not specified. The names of objects
further down the tree are not returned, but can be obtained by recursive use of [JWN.

If Y refers to a non-existent GUI name, a VALUE ERROR is reported.

Note that [JWN reports only those child objects visible from the current thread.

GUI objects are named relative to the current namespace. The following examples are

equivalent:
OWN 'F1.B1'
F1.0OWN 'B1'
F1.81.0WN "'
Examples
OwWN'.'

FORM1 MENU1

OWN'FORM1"
CANCEL GROUP1 MENUBAR OK

‘Button'OWN'FORM1'
CANCEL OK

Chapter 6 System Functions & Variables 537

Windows Set Property: {X}Ows Y

This system function resets property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
defines the property or properties to be changed and the new value or values. If a
single property is to be changed, Y is a vector whose first element Y[1] is a character
vector containing the property name. IfY is of length 2, Y[2] contains the
corresponding property value. However, if the property value is itself a numeric or
nested vector, its elements may be may be specifiedin Y[2 3 4 ...] instead of as
a single nested element in Y[2]. IfY specifies more than one property, they may be
declared either positionally or with a keyword followed by a value. Properties are
specified positionally by placing their values in Y in the order prescribed for an object
of that type. Note that the first property in Y must always be specified with a keyword
because the Type property (which is expected first) may not be changed using (WS.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If Y refers to a
non-existent property, or to a property that is not defined for the type of object X, or to
a property whose value may not be changed by [JWS, a DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of X (referring
to the namespace in which the function is being evaluated) may be omitted. The
following examples are equivalent:

'F1.B1' [OWS 'Caption' '&0k’
'81' F1.0WS 'Caption' '&0k'
'* F1.B1.0WS 'Caption' '&0k'
F1.81.0WS 'Caption' '8&0k'

Examples
'"F1' OWC 'Form' A A default Form

"F1' OWS 'Active' O

'F1' [OWS 'Caption' 'My Application'

'F1' OWS 'Posn' 0 O

"F1' OWS ('Active' 1)('Event' 'Configure' 'FO0')

"F1' 0OWS 'Junk' 10
DOMAIN ERROR

'F1' [OWS 'MaxButton' O
DOMAIN ERROR

538

Dyalog APL/W Language Reference

Workspace Identification: OWSID

This is a simple character vector. It contains the identification name of the active
workspace. If a new name is assigned, that name becomes the identification name of
the active workspace, provided that it is a correctly formed name.

See page 1 for workspace naming conventions.

It is useful, though not essential, to associate workspaces with a specific directory in
order to distinguish workspaces from other files.

The value of JWSID in a clear workspace is 'CLEAR WS'.

Example

OwsID
CLEAR WS

OWSID«'WS/MYWORK' (UNIX)
OWSID<«'B:\WS\MYWORK' (Windows)

Window Expose: OWX

OWX is a system variable that determines:

a) whether or not the names of properties, methods and events provided by a
Dyalog APL GUI object are exposed.
b) certain aspects of behaviour of .Net and COM objects.

The permitted values of WX are 0, 1, or 3. Considered as a sum of bit flags, the first bit
in [JWX specifies (a), and the second bit specifies (b).

IfOWX is 1 (1* bit is set), the names of properties, methods and events are exposed as
reserved names in GUI namespaces and can be accessed directly by name. This means
that the same names may not be used for global variables in GUI namespaces.

If WX is 0, these names are hidden and may only be accessed indirectly using WG and
aws.

IfOWX is 3 (2™ bit is also set) COM and .Net objects adopt the Version 11 behaviour,
as opposed to the behaviour in previous versions of Dyalog APL.

Chapter 6 System Functions & Variables 539

Note that it is the value of WX in the object itself, rather than the value of WX in the
calling environment, that determines its behaviour.

The value of WX in a clear workspace is defined by the default wx parameter (see
User Guide) which itself defaults to 3.

OWX has namespace scope and may be localised in a function header. This allows you
to create a utility namespace or utility function in which the exposure of objects is
known and determined, regardless of its global value in the workspace.

Extended

State Indicator: R«[XSI

R is a nested vector of character vectors giving the full path names of the functions or
operators in the execution stack. Note that if a function has changed space, its original
(home) space is reported, rather than its current one.

Example

In the following, function f oo in namespace x has called goo in namespace y.
Function goo has then changed space (JCS) to namespace z where it has been
suspended:

)si
[z] y.goo[2]x
x.foo[1]
0OXS1I reports the full path name of each function:

Oxsi
#.y.goo #.x.foo

This can be used for example, to edit all functions in the stack, irrespective of the
current namespace by typing: [Jed [xsi

See also [JSI.

540

Dyalog APL/W Language Reference

Set External Variable: X OXT Y

Y must be a simple character scalar or vector which is taken to be a variable name. X
must be a simple character scalar or vector which is taken to be a file reference. The
name given by Y is identified as an EXTERNAL VARIABLE associated with an
EXTERNAL ARRAY whose value may be stored in file identified by X. See User
Guide for file naming conventions under Windows and UNIX.

If Y is the name of a defined function or operator, a label or a namespace in the active
workspace, a DOMAIN ERROR is reported.

Example
"EXT\ARRAY"' OXT 'V'

If the file reference does not exist, the external variable has no value until a value is
assigned:

v
VALUE ERROR
v

A

A value assigned to an external variable is stored in file space, not within the
workspace:

Owa
2261186

V<1100000

OwWA
2261186

There are no specific restrictions placed on the use of external variables. They must
conform to the normal requirements when used as arguments of functions or as
operands of operators. The essential difference between a variable and an external
variable is that an external variable requires only temporary workspace for an operation
to accommodate (usually) a part of its value.

Chapter 6

System Functions & Variables

541

Examples
+/V

15
V[3]«c'ABC'
v

1 2 ABC 4 5
b7V
3

Assignment allows the structure or the value of an external variable to be changed
without fully defining the external array in the workspace.

Examples
V,«c2 Lp18
pV
6
V(6]
1234
567 8
V{1 2 4 5 6]x«10
v
10 20 ABC 40 50 10 20 30 4O
50 60 70 80

An external array is (usually) preserved in file space when the name of the external

variable is disassociated from the file. It may be re-associated with any valid variable

name.
Example
gex'v'
"EXT\ARRAY'OXT'F'
F
10 20 ABC 40 50 10 20 30 4O
50 60 70 80

In Unix versions, if X is an empty vector, the external array is associated with a
temporary file which is erased when the array is disassociated.

542 Dyalog APL/W Language Reference

Example
"'OXT'TEMP'
TEMP«110
+/TEMPxTEMP

385
OEX'TEMP'

An external array may be erased using the native file function: JNERASE.

In a multi-user environment (UNIX or a Windows LAN) a new file associated with an
external array is created with access permission for owner read/write. An existing file
is opened for exclusive use (by the owner) if the permissions remain at this level. If the
access permissions allow any other users to read and write to the file, the file is opened
for shared use. In Unix versions, access permissions may be modified using the
appropriate Operating System command, or in Windows using the supplied function
XVAR from the UTIL workspace.

Query External Variable: R<OXT Y

Y must be a simple character scalar or vector which is taken to be a variable name. R is
a simple character vector containing the file reference of the external array associated
with the variable named by Y, or the null vector if there is no associated external array.
Example

OXT'v'
EXT\ARRAY

pOXT'G'

543

CHAPTER 7

System Commands

System commands are not executable APL expressions. They provide services or
information associated with the workspace and the external environment.

Command Description

)JCLASSES List classes

JCLEAR Clear the workspace

)CMD Y Execute a Windows Command
)JCONTINUE Save a Continue workspace and terminate APL
)COPY {Y} Copy objects from another workspace
)CS {Y} Change current namespace

)JDROP {Y} Drop named workspace

JED Y Edit object(s)

JERASE Y Erase object(s)

JEVENTS List events of GUI namespace or object
YJFNS {Y} List user defined Functions

)HOLDS Display Held tokens

)LIB {Y} List workspaces in a directory

JLOAD {Y} Load a workspace

NS {Y} Create a global Namespace

JMETHODS List methods in GUI namespace or object
JOBJECTS {Y} | List global namespaces

)OBS {Y} List global namespaces (alternative form)
)JOFF Terminate the APL session

JOPS {Y} List user defined Operators

JPCOPY {Y} Perform Protected Copy of objects
)PROPS List properties of GUI namespace or object
JRESET Reset the state indicator

{ } indicates that the parameter(s) denoted by Y are optional.

Figure 7(i) : System Commands

544 Dyalog APL/W Language Reference

Command Description

)SAVE {Y} Save the workspace

JSH {Y} Execute a (UNIX) Shell command

)SI State Indicator

)SINL State Indicator with local Name Lists
)TID {Y} Switch current Thread Identity

JVARS {Y} List user defined global Variables

JWSID {Y} Workspace Identification

)XLOAD Y Load a workspace; do not execute [JL X

{ } indicates that the parameter(s) denoted by Y are optional.

Figure 7(i) : System Commands

Command Presentation

System commands may be entered from immediate execution mode or in response to
the prompt [0: within evaluated input. All system commands begin with the symbol),
known as a right parenthesis. All system commands may be entered in upper or lower
case. Each command is described in alphabetical order in this chapter.

Chapter 7 System Commands 545

List Classes:)CLASSES

This command lists the names of APL Classes in the active workspace.

Example:

JCLEAR
clear ws
JED oMyClass

:Class MyClass
vV Make Name
:Implements Constructor
(ODF Name

v
tEndClass A MyClass

JCLASSES
MyClass
JCOPY 00 YourClass
.\OO saved Sun Jan 29 18:32:03 2006
JCLASSES
MyClass YourClass
[ONC 'MyClass' 'YourClass'
9.4 9.4

Clear Workspace: JCLEAR

This command clears the active workspace and gives the report "clear ws". The
active workspace is lost. The name of a clear workspace is CLEAR WS. System
variables are initialised with their default values as described in Chapter 5.

In GUI implementations of Dyalog APL,) CLEAR expunges all GUI objects, discards
any unprocessed events in the event queue and resets the properties of the Root object
". " to their default values.

Example

JCLEAR
clear ws

546 Dyalog APL/W Language Reference

Windows Command Processor:)CMD cmd

This command allows Windows Command Processor or UNIX shell commands to be
given from APL.)CMD is a synonym of) SH. Either command may be given in either
environment (Windows or UNIX) with exactly the same effect.) CMD is probably
more natural for the Windows user. This section describes the behaviour of) CMD and

) SH under Windows. See) SH for a discussion of the behaviour of these commands
under UNIX.

The system functions [JCMD and [JSH provide similar facilities but may be executed
from within APL code.

Note that under Windows, you may not execute) CMD without a command. If you
wish to, you can easily open a new Command Prompt window outside APL.

Example
)CMD DIR

Volume in drive C has no label
Directory of C:\PETE\WS

<DIR> 5-07-94% 3.02p
.. <DIR> 5-07-94% 3.02p
SALES DWS 110092 5-07-94% 3.29p
EXPENSES DWS 154207 5-07-94% 3.29p

If emd issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
input and output to the console. If this is done, APL detects the presence of a ">" in
the command line and runs the command processor in a visible window and does not
direct output to the pipe. If you fail to do this your system will appear to hang because
there is no mechanism for you to receive or respond to the prompt.

Example

JCMD DATE <CON >CON
(Command Prompt window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95
(Command Prompt window disappears)

Chapter 7 System Commands 547

Implementation Notes

The argument of)CMD is simply passed to the appropriate command processor for
execution and its output is received using an unnamed pipe.

By default,) CMD will execute the string (‘cmd.exe /c',Y) where Y is the
argument given to) CMD. However, the implementation permits the use of alternative
command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by "\¢". If COMSPEC is not
defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. If
CMD_POSTFIX is not defined, it defaults to an empty vector.

Save Continuation:)CONTINUE

This command saves the active workspace under the name CONTINUE and ends the
Dyalog APL session.

When you subsequently start another Dyalog APL session, the CONTINUE workspace
is loaded automatically. When a CONTINUE workspace is loaded, the latent
expression (if any) is NOT executed.

Note that the values of all system variables (including [JSM) and GUI objects are also
saved in CONTINUE.

548

Dyalog APL/W Language Reference

Copy Workspace: YCOPY {ws {nms}}

This command brings all or selected global objects nms from a stored workspace with
the given name. A stored workspace is one which has previously been saved with the
system command) SAVE or the system function [JSAVE. See page 1 for the rules for
specifying a workspace name.

If the list of names is excluded, all defined objects (including namespaces) are copied.

If the workspace name identifies a valid, readable workspace, the system reports the
workspace name, "saved" and the date and time when the workspace was last saved.

Examples

JCOPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1992

JCOPY TEMP [LX FOO X A.B.C
./TEMP saved Mon Nov 1 14:20:47 1992
not found X

Copied objects are defined at the global level in the active workspace. Existing global
objects in the active workspace with the same name as a copied object are replaced. If
the copied object replaces either a function in the state indicator, or an object that is an
operand of an operator in the state indicator, or a function whose left argument is being
executed, the original object remains defined until its execution is completed or it is no
longer referenced by an operator in the state indicator. If the workspace name is not
valid or does not exist or if access to the workspace is not authorised, the system
reports ws not found.

You may copy an object from a namespace by specifying its full pathname. The object
will be copied to the current namespace in the active workspace, losing its original
parent and gaining a new one in the process. You may only copy a GUI object into a
namespace that is a suitable parent for that object. For example, you could only copy a
Group object from a saved workspace if the current namespace in the active workspace
is itself a Form, SubForm or Group.

If the workspace name identifies a file that is not a workspace, the system reports bad
WS.

If the source workspace is too large to be loaded , the system reports ws too large.

When copying data between Classic and Unicode Editions,) COPY will fail with
TRANSLATION ERROR if any object in the source workspace fails conversion
between Unicode and [JAV indices, whether or not that object is specified by nms. See
OAVU for further details.

Chapter 7 System Commands 549

If "ws" is omitted, the file open dialog box is displayed and all objects copied from the
selected workspace.

If the list of names is included, the names of system variables may also be included and
copied into the active workspace. The global referents will be copied.

If an object is not found in the stored workspace, the system reports not found
followed by the name of the object.

If the list of names includes the name of:

a) an Instance of a Class but not the Class itself

b) a Class but not a Class upon which it depends

c) an array or a namespace that contains a ref to another namespace, but not the
namespace to which it refers

the dependant object(s) will also be copied but will be unnamed and hidden. In such
as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named
#.CompF i le and an Instance (of CompF i le)named icf,

)COPY CFWS icf
.\CFWS saved Fri Mar 03 10:21:36 2006
copied object created an unnamed copy of class #.CompFile

The existence of a hidden copy can be confusing, especially if it is a hidden copy of an
object which had a name which is in use in the curren